def main(dir_path, output_dir): ''' Run Pipeline of processes on file one by one. ''' scores = {} files = os.listdir(dir_path) maxdelta = 30 delta = range(8, maxdelta) print('Delta days accounted: ', max(delta)) for file_name in files: try: symbol = file_name.split('.')[0] print(symbol) datasets = load_dataset(dir_path, file_name) for dataset in datasets: columns = dataset.columns adjclose = columns[-2] returns = columns[-1] for dele in delta: addFeatures(dataset, adjclose, returns, dele) dataset = dataset.iloc[max( delta ):, :] # computation of returns and moving means introduces NaN which are nor removed finance = mergeDataframes(datasets) high_value = 365 high_value = min(high_value, finance.shape[0] - 1) lags = range(high_value, 30) # print('Maximum time lag applied', high_value) if 'symbol' in finance.columns: finance.drop('symbol', axis=1, inplace=True) # print('Size of data frame: ', finance.shape) # print('Number of NaN after merging: ', count_missing(finance)) finance = finance.interpolate(method='time') # print('Number of NaN after time interpolation: ', finance.shape[0]*finance.shape[1] - finance.count().sum()) finance = finance.fillna(finance.mean()) # print('Number of NaN after mean interpolation: ', (finance.shape[0]*finance.shape[1] - finance.count().sum())) finance.columns = [ str(col.replace('&', '_and_')) for col in finance.columns ] #Move the Open Values behind by one dataset. finance.open = finance.open.shift(-1) # print(high_value) finance = applyTimeLag(finance, [high_value], delta) # print('Number of NaN after temporal shifting: ', count_missing(finance)) # print('Size of data frame after feature creation: ', finance.shape) mean_squared_errors, r2_scores = performRegression( finance, 0.95, symbol, output_dir) scores[symbol] = [mean_squared_errors, r2_scores] except Exception, e: pass traceback.print_exc()
def main(dir_path, output_dir): ''' Run Pipeline of processes on file one by one. ''' scores = {} files = os.listdir(dir_path) maxdelta = 30 delta = range(8, maxdelta) print('Delta days accounted: ', max(delta)) for file_name in files: try: symbol = file_name.split('.')[0] print(symbol) datasets = load_dataset(dir_path, file_name) for dataset in datasets: columns = dataset.columns adjclose = columns[-2] returns = columns[-1] for dele in delta: addFeatures(dataset, adjclose, returns, dele) dataset = dataset.iloc[max(delta):,:] # computation of returns and moving means introduces NaN which are nor removed finance = mergeDataframes(datasets) high_value = 365 high_value = min(high_value, finance.shape[0] - 1) lags = range(high_value, 30) print('Maximum time lag applied', high_value) if 'symbol' in finance.columns: finance.drop('symbol', axis=1, inplace=True) print('Size of data frame: ', finance.shape) print('Number of NaN after merging: ', count_missing(finance)) finance = finance.interpolate(method='time') print('Number of NaN after time interpolation: ', finance.shape[0]*finance.shape[1] - finance.count().sum()) finance = finance.fillna(finance.mean()) print('Number of NaN after mean interpolation: ', (finance.shape[0]*finance.shape[1] - finance.count().sum())) finance.columns = [str(col.replace('&', '_and_')) for col in finance.columns] #Move the Open Values behind by one dataset. finance.open = finance.open.shift(-1) print(high_value) finance = applyTimeLag(finance, [high_value], delta) print('Number of NaN after temporal shifting: ', count_missing(finance)) print('Size of data frame after feature creation: ', finance.shape) mean_squared_errors, r2_scores = performRegression(finance, 0.95, \ symbol, output_dir) scores[symbol] = [mean_squared_errors, r2_scores] except Exception, e: pass traceback.print_exc()