def test(model, device, test_loader, criterion, L1_loss_enable=False): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) #test_loss += criterion(output, target, reduction='sum').item() # sum up batch loss # criterion = F.nll_loss test_loss += criterion(output, target).item( ) # sum up batch loss # criterion = nn.CrossEntropyLoss() pred = output.argmax( dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() #test_loss /= len(test_loader.dataset) # criterion = F.nll_loss test_loss /= len(test_loader) # criterion = nn.CrossEntropyLoss() if (L1_loss_enable == True): regloss = regularization.L1_Loss_calc(model, 0.0005) regloss /= len( test_loader.dataset ) # by batch size which is here total test dataset size test_loss += regloss print( '\nTest set: Average loss: {:.6f}, Accuracy: {}/{} ({:.2f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) acc = 100. * correct / len(test_loader.dataset) return np.round(acc, 2), test_loss
def train(model, device, train_loader, criterion, optimizer, lr_scheduler, L1_loss_enable=False): model.train() pbar = tqdm(train_loader) train_loss = 0 correct = 0 processed = 0 for batch_idx, (data, target) in enumerate(pbar): # get samples data, target = data.to(device), target.to(device) # Init optimizer.zero_grad() # In PyTorch, we need to set the gradients to zero before starting to do backpropragation because PyTorch accumulates the gradients on subsequent backward passes. # Because of this, when you start your training loop, ideally you should zero out the gradients so that you do the parameter update correctly. # Predict y_pred = model(data) # Calculate loss loss = criterion(y_pred, target) if (L1_loss_enable == True): regloss = regularization.L1_Loss_calc(model, 0.0005) regloss /= len(data) # by batch size loss += regloss train_loss += loss.item() # Backpropagation loss.backward() optimizer.step() # Update pbar-tqdm pred = y_pred.argmax( dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() processed += len(data) #pbar.set_description(desc= f'Loss={loss.item():0.6f} Batch_id={batch_idx} Accuracy={100*correct/processed:0.2f}') pbar.set_description( desc= f'Loss={train_loss/(batch_idx+1):0.6f} Batch_id={batch_idx+1} Accuracy={100*correct/processed:0.2f}' ) train_loss /= len(train_loader) acc = 100. * correct / len(train_loader.dataset) #processed # return np.round(acc, 2), np.round(train_loss, 6)
def train(model, device, train_loader, optimizer, criterion, L1_loss_enable=False): model.train() pbar = tqdm(train_loader) train_loss = 0 correct = 0 processed = 0 for batch_idx, (data, target) in enumerate(pbar): # get samples data, target = data.to(device), target.to(device) # Init optimizer.zero_grad() y_pred = model(data) loss = criterion(y_pred, target) if (L1_loss_enable == True): regloss = regularization.L1_Loss_calc(model, 0.0005) regloss /= len(data) # by batch size loss += regloss train_loss += loss.item() # Backpropagation loss.backward() optimizer.step() # Update pbar-tqdm pred = y_pred.argmax( dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() processed += len(data) pbar.set_description( desc= f'Loss={train_loss/(batch_idx+1):0.6f} Batch_id={batch_idx} Accuracy={100*correct/processed:0.2f}' ) train_loss /= len(train_loader) acc = 100. * correct / len(train_loader.dataset) #processed # return np.round(acc, 2), np.round(train_loss, 6)