示例#1
0
def load_policy(filename, state_size=231, hidden_layer_size=256, seed=None):
    # Training parameters
    training_parameters = {
        'buffer_size': int(1e5),
        'batch_size': 32,
        'update_every': 8,
        'learning_rate': 0.5e-4,
        'tau': 1e-3,
        'gamma': 0.99,
        'buffer_min_size': 0,
        'hidden_size': hidden_layer_size,
        'use_gpu': False
    }

    # The action space of flatland is 5 discrete actions
    action_size = 5

    # Create Double DQN Policy object by loading the network weights from file.
    policy = DDDQNPolicy(state_size,
                         action_size,
                         Namespace(**training_parameters),
                         seed=seed)
    policy.qnetwork_local = torch.load(filename)

    return policy
示例#2
0
    def __init__(self, state_size, action_size, in_parameters=None):
        print(">> MultiDecisionAgent")
        super(MultiDecisionAgent, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.in_parameters = in_parameters
        self.memory = DummyMemory()
        self.loss = 0

        self.ppo_policy = PPOPolicy(state_size,
                                    action_size,
                                    use_replay_buffer=False,
                                    in_parameters=in_parameters)
        self.dddqn_policy = DDDQNPolicy(state_size, action_size, in_parameters)
        self.policy_selector = PPOPolicy(state_size, 2)
def cartpole(use_dddqn=False):
    eps = 1.0
    eps_decay = 0.99
    min_eps = 0.01
    training_mode = True

    env = gym.make("CartPole-v1")
    observation_space = env.observation_space.shape[0]
    action_space = env.action_space.n
    if not use_dddqn:
        policy = PPOPolicy(observation_space, action_space, False)
    else:
        policy = DDDQNPolicy(observation_space, action_space, dddqn_param)
    episode = 0
    checkpoint_interval = 20
    scores_window = deque(maxlen=100)

    writer = SummaryWriter()

    while True:
        episode += 1
        state = env.reset()
        policy.reset(env)
        handle = 0
        tot_reward = 0

        policy.start_episode(train=training_mode)
        while True:
            # env.render()
            policy.start_step(train=training_mode)
            action = policy.act(handle, state, eps)
            state_next, reward, terminal, info = env.step(action)
            policy.end_step(train=training_mode)
            tot_reward += reward
            # reward = reward if not terminal else -reward
            reward = 0 if not terminal else -1
            policy.step(handle, state, action, reward, state_next, terminal)
            state = np.copy(state_next)
            if terminal:
                break

        policy.end_episode(train=training_mode)
        eps = max(min_eps, eps * eps_decay)
        scores_window.append(tot_reward)
        if episode % checkpoint_interval == 0:
            print(
                '\rEpisode: {:5}\treward: {:7.3f}\t avg: {:7.3f}\t eps: {:5.3f}\t replay buffer: {}'
                .format(episode, tot_reward, np.mean(scores_window), eps,
                        len(policy.memory)))
        else:
            print(
                '\rEpisode: {:5}\treward: {:7.3f}\t avg: {:7.3f}\t eps: {:5.3f}\t replay buffer: {}'
                .format(episode, tot_reward, np.mean(scores_window), eps,
                        len(policy.memory)),
                end=" ")

        writer.add_scalar("CartPole/value", tot_reward, episode)
        writer.add_scalar("CartPole/smoothed_value", np.mean(scores_window),
                          episode)
        writer.flush()
示例#4
0
# This is the official formula used during evaluations
# See details in flatland.envs.schedule_generators.sparse_schedule_generator
max_steps = int(4 * 2 * (env.height + env.width + (n_agents / n_cities)))

action_count = [0] * action_size
action_dict = dict()
agent_obs = [None] * env.get_num_agents()
agent_prev_obs = [None] * env.get_num_agents()
agent_prev_action = [2] * env.get_num_agents()
update_values = False
smoothed_normalized_score = -1.0
smoothed_eval_normalized_score = -1.0
smoothed_completion = 0.0
smoothed_eval_completion = 0.0

policy = DDDQNPolicy(state_size, action_size, train_params)


def format_action_prob(action_probs):
    action_probs = np.round(action_probs, 3)
    actions = ["↻", "←", "↑", "→", "◼"]

    buffer = ""
    for action, action_prob in zip(actions, action_probs):
        buffer += action + " " + "{:.3f}".format(action_prob) + " "

    return buffer


def eval_policy(env, policy, n_eval_episodes, max_steps):
    action_dict = dict()
示例#5
0
def train_agent(seed, n_episodes, timed = False):

    # Observation parameters
    observation_radius = 10

    # Exploration parameters
    eps_start = 1.0
    eps_end = 0.01
    eps_decay = 0.997  # for 2500ts

    # Setup the environment
    env, max_steps, x_dim, y_dim, observation_tree_depth, _ = create_multi_agent_rail_env(seed, timed)
    env.reset(True, True)

    # Calculate the state size given the depth of the tree observation and the number of features
    n_features_per_node = env.obs_builder.observation_dim
    n_nodes = 0
    for i in range(observation_tree_depth + 1):
        n_nodes += np.power(4, i)
    state_size = n_features_per_node * n_nodes

    # The action space of flatland is 5 discrete actions
    action_size = 5
    action_dict = dict()

    # And some variables to keep track of the progress
    scores_window = deque(maxlen=100)  # todo smooth when rendering instead
    completion_window = deque(maxlen=100)
    scores = []
    completion = []
    action_count = [0] * action_size
    agent_obs = [None] * env.get_num_agents()
    agent_prev_obs = [None] * env.get_num_agents()
    agent_prev_action = [2] * env.get_num_agents()
    update_values = False

    # Training parameters
    training_parameters = {
        'buffer_size': int(1e5),
        'batch_size': 32,
        'update_every': 8,
        'learning_rate': 0.5e-4,
        'tau': 1e-3,
        'gamma': 0.99,
        'buffer_min_size': 0,
        'hidden_size': 256,
        'use_gpu': False
    }

    # Double Dueling DQN policy
    policy = DDDQNPolicy(state_size, action_size, Namespace(**training_parameters), seed=(seed+1))

    for episode_idx in range(n_episodes):
        score = 0

        # Reset environment
        obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True)

        # Build agent specific observations
        for agent in env.get_agent_handles():
            if obs[agent]:
                agent_obs[agent] = normalize_observation(obs[agent], observation_tree_depth, observation_radius=observation_radius)
                agent_prev_obs[agent] = agent_obs[agent].copy()

        # Run episode
        for _ in range(max_steps - 1):
            for agent in env.get_agent_handles():
                if info['action_required'][agent]:
                    # If an action is required, we want to store the obs at that step as well as the action
                    update_values = True
                    action = policy.act(agent_obs[agent], eps=eps_start)
                    action_count[action] += 1
                else:
                    update_values = False
                    action = 0
                action_dict.update({agent: action})

            # Environment step
            next_obs, all_rewards, done, info = env.step(action_dict)

            # Update replay buffer and train agent
            for agent in range(env.get_num_agents()):
                # Only update the values when we are done or when an action was taken and thus relevant information is present
                if update_values or done[agent]:
                    policy.step(agent_prev_obs[agent], agent_prev_action[agent], all_rewards[agent], agent_obs[agent], done[agent])

                    agent_prev_obs[agent] = agent_obs[agent].copy()
                    agent_prev_action[agent] = action_dict[agent]

                if next_obs[agent]:
                    agent_obs[agent] = normalize_observation(next_obs[agent], observation_tree_depth, observation_radius=observation_radius)

                score += all_rewards[agent]

            if done['__all__']:
                break

        # Epsilon decay
        eps_start = max(eps_end, eps_decay * eps_start)

        # Collection information about training
        tasks_finished = np.sum([int(done[idx]) for idx in env.get_agent_handles()])
        completion_window.append(tasks_finished / max(1, env.get_num_agents()))
        scores_window.append(score / (max_steps * env.get_num_agents()))
        completion.append((np.mean(completion_window)))
        scores.append(np.mean(scores_window))
        action_probs = action_count / np.sum(action_count)

        if episode_idx % 100 == 0:
            end = "\n"
            action_count = [1] * action_size
        else:
            end = " "

        print('\rTraining {} agents on {}x{}\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
            env.get_num_agents(),
            x_dim, y_dim,
            episode_idx,
            np.mean(scores_window),
            100 * np.mean(completion_window),
            eps_start,
            action_probs
        ), end=end)

    # Return trained policy.
    return policy
示例#6
0
def train_agent(train_params, train_env_params, eval_env_params, obs_params):
    # Environment parameters
    n_agents = train_env_params.n_agents
    x_dim = train_env_params.x_dim
    y_dim = train_env_params.y_dim
    n_cities = train_env_params.n_cities
    max_rails_between_cities = train_env_params.max_rails_between_cities
    max_rails_in_city = train_env_params.max_rails_in_city
    seed = train_env_params.seed

    # Unique ID for this training
    now = datetime.now()
    training_id = now.strftime('%y%m%d%H%M%S')

    # Observation parameters
    observation_tree_depth = obs_params.observation_tree_depth
    observation_radius = obs_params.observation_radius
    observation_max_path_depth = obs_params.observation_max_path_depth

    # Training parameters
    eps_start = train_params.eps_start
    eps_end = train_params.eps_end
    eps_decay = train_params.eps_decay
    n_episodes = train_params.n_episodes
    checkpoint_interval = train_params.checkpoint_interval
    n_eval_episodes = train_params.n_evaluation_episodes
    restore_replay_buffer = train_params.restore_replay_buffer
    save_replay_buffer = train_params.save_replay_buffer

    # Set the seeds
    random.seed(seed)
    np.random.seed(seed)

    # Observation builder
    predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth,
                                         predictor=predictor)

    # Setup the environments
    train_env = create_rail_env(train_env_params, tree_observation)
    train_env.reset(regenerate_schedule=True, regenerate_rail=True)
    eval_env = create_rail_env(eval_env_params, tree_observation)
    eval_env.reset(regenerate_schedule=True, regenerate_rail=True)

    # Setup renderer
    if train_params.render:
        env_renderer = RenderTool(train_env, gl="PGL")

    # Calculate the state size given the depth of the tree observation and the number of features
    n_features_per_node = train_env.obs_builder.observation_dim
    n_nodes = sum([np.power(4, i) for i in range(observation_tree_depth + 1)])
    state_size = n_features_per_node * n_nodes

    # The action space of flatland is 5 discrete actions
    action_size = 5

    # Max number of steps per episode
    # This is the official formula used during evaluations
    # See details in flatland.envs.schedule_generators.sparse_schedule_generator
    # max_steps = int(4 * 2 * (env.height + env.width + (n_agents / n_cities)))
    max_steps = train_env._max_episode_steps

    action_count = [0] * action_size
    action_dict = dict()
    agent_obs = [None] * n_agents
    agent_prev_obs = [None] * n_agents
    agent_prev_action = [2] * n_agents
    update_values = [False] * n_agents

    # Smoothed values used as target for hyperparameter tuning
    smoothed_normalized_score = -1.0
    smoothed_eval_normalized_score = -1.0
    smoothed_completion = 0.0
    smoothed_eval_completion = 0.0

    # Double Dueling DQN policy
    policy = DDDQNPolicy(state_size, action_size, train_params)

    # Loads existing replay buffer
    if restore_replay_buffer:
        try:
            policy.load_replay_buffer(restore_replay_buffer)
            policy.test()
        except RuntimeError as e:
            print(
                "\n🛑 Could't load replay buffer, were the experiences generated using the same tree depth?"
            )
            print(e)
            exit(1)

    print("\n💾 Replay buffer status: {}/{} experiences".format(
        len(policy.memory.memory), train_params.buffer_size))

    hdd = psutil.disk_usage('/')
    if save_replay_buffer and (hdd.free / (2**30)) < 500.0:
        print(
            "⚠️  Careful! Saving replay buffers will quickly consume a lot of disk space. You have {:.2f}gb left."
            .format(hdd.free / (2**30)))

    # TensorBoard writer
    writer = SummaryWriter()
    writer.add_hparams(vars(train_params), {})
    writer.add_hparams(vars(train_env_params), {})
    writer.add_hparams(vars(obs_params), {})

    training_timer = Timer()
    training_timer.start()

    print(
        "\n🚉 Training {} trains on {}x{} grid for {} episodes, evaluating on {} episodes every {} episodes. Training id '{}'.\n"
        .format(train_env.get_num_agents(), x_dim, y_dim, n_episodes,
                n_eval_episodes, checkpoint_interval, training_id))

    for episode_idx in range(n_episodes + 1):
        step_timer = Timer()
        reset_timer = Timer()
        learn_timer = Timer()
        preproc_timer = Timer()
        inference_timer = Timer()

        # Reset environment
        reset_timer.start()
        obs, info = train_env.reset(regenerate_rail=True,
                                    regenerate_schedule=True)
        reset_timer.end()

        if train_params.render:
            env_renderer.set_new_rail()

        score = 0
        nb_steps = 0
        actions_taken = []

        # Build initial agent-specific observations
        for agent in train_env.get_agent_handles():
            if obs[agent]:
                agent_obs[agent] = normalize_observation(
                    obs[agent],
                    observation_tree_depth,
                    observation_radius=observation_radius)
                agent_prev_obs[agent] = agent_obs[agent].copy()

        # Run episode
        for step in range(max_steps - 1):
            inference_timer.start()
            for agent in train_env.get_agent_handles():
                if info['action_required'][agent]:
                    update_values[agent] = True
                    action = policy.act(agent_obs[agent], eps=eps_start)

                    action_count[action] += 1
                    actions_taken.append(action)
                else:
                    # An action is not required if the train hasn't joined the railway network,
                    # if it already reached its target, or if is currently malfunctioning.
                    update_values[agent] = False
                    action = 0
                action_dict.update({agent: action})
            inference_timer.end()

            # Environment step
            step_timer.start()
            next_obs, all_rewards, done, info = train_env.step(action_dict)
            step_timer.end()

            # Render an episode at some interval
            if train_params.render and episode_idx % checkpoint_interval == 0:
                env_renderer.render_env(show=True,
                                        frames=False,
                                        show_observations=False,
                                        show_predictions=False)

            # Update replay buffer and train agent
            for agent in train_env.get_agent_handles():
                if update_values[agent] or done['__all__']:
                    # Only learn from timesteps where somethings happened
                    learn_timer.start()
                    policy.step(agent_prev_obs[agent],
                                agent_prev_action[agent], all_rewards[agent],
                                agent_obs[agent], done[agent])
                    learn_timer.end()

                    agent_prev_obs[agent] = agent_obs[agent].copy()
                    agent_prev_action[agent] = action_dict[agent]

                # Preprocess the new observations
                if next_obs[agent]:
                    preproc_timer.start()
                    agent_obs[agent] = normalize_observation(
                        next_obs[agent],
                        observation_tree_depth,
                        observation_radius=observation_radius)
                    preproc_timer.end()

                score += all_rewards[agent]

            nb_steps = step

            if done['__all__']:
                break

        # Epsilon decay
        eps_start = max(eps_end, eps_decay * eps_start)

        # Collect information about training
        tasks_finished = sum(done[idx]
                             for idx in train_env.get_agent_handles())
        completion = tasks_finished / max(1, train_env.get_num_agents())
        normalized_score = score / (max_steps * train_env.get_num_agents())
        action_probs = action_count / np.sum(action_count)
        action_count = [1] * action_size

        smoothing = 0.99
        smoothed_normalized_score = smoothed_normalized_score * smoothing + normalized_score * (
            1.0 - smoothing)
        smoothed_completion = smoothed_completion * smoothing + completion * (
            1.0 - smoothing)

        # Print logs
        if episode_idx % checkpoint_interval == 0:
            torch.save(
                policy.qnetwork_local, './checkpoints/' + training_id + '-' +
                str(episode_idx) + '.pth')

            if save_replay_buffer:
                policy.save_replay_buffer('./replay_buffers/' + training_id +
                                          '-' + str(episode_idx) + '.pkl')

            if train_params.render:
                env_renderer.close_window()

        print('\r🚂 Episode {}'
              '\t 🏆 Score: {:.3f}'
              ' Avg: {:.3f}'
              '\t 💯 Done: {:.2f}%'
              ' Avg: {:.2f}%'
              '\t 🎲 Epsilon: {:.3f} '
              '\t 🔀 Action Probs: {}'.format(episode_idx, normalized_score,
                                             smoothed_normalized_score,
                                             100 * completion,
                                             100 * smoothed_completion,
                                             eps_start,
                                             format_action_prob(action_probs)),
              end=" ")

        # Evaluate policy and log results at some interval
        if episode_idx % checkpoint_interval == 0 and n_eval_episodes > 0:
            scores, completions, nb_steps_eval = eval_policy(
                eval_env, policy, train_params, obs_params)

            writer.add_scalar("evaluation/scores_min", np.min(scores),
                              episode_idx)
            writer.add_scalar("evaluation/scores_max", np.max(scores),
                              episode_idx)
            writer.add_scalar("evaluation/scores_mean", np.mean(scores),
                              episode_idx)
            writer.add_scalar("evaluation/scores_std", np.std(scores),
                              episode_idx)
            writer.add_histogram("evaluation/scores", np.array(scores),
                                 episode_idx)
            writer.add_scalar("evaluation/completions_min",
                              np.min(completions), episode_idx)
            writer.add_scalar("evaluation/completions_max",
                              np.max(completions), episode_idx)
            writer.add_scalar("evaluation/completions_mean",
                              np.mean(completions), episode_idx)
            writer.add_scalar("evaluation/completions_std",
                              np.std(completions), episode_idx)
            writer.add_histogram("evaluation/completions",
                                 np.array(completions), episode_idx)
            writer.add_scalar("evaluation/nb_steps_min", np.min(nb_steps_eval),
                              episode_idx)
            writer.add_scalar("evaluation/nb_steps_max", np.max(nb_steps_eval),
                              episode_idx)
            writer.add_scalar("evaluation/nb_steps_mean",
                              np.mean(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_std", np.std(nb_steps_eval),
                              episode_idx)
            writer.add_histogram("evaluation/nb_steps",
                                 np.array(nb_steps_eval), episode_idx)

            smoothing = 0.9
            smoothed_eval_normalized_score = smoothed_eval_normalized_score * smoothing + np.mean(
                scores) * (1.0 - smoothing)
            smoothed_eval_completion = smoothed_eval_completion * smoothing + np.mean(
                completions) * (1.0 - smoothing)
            writer.add_scalar("evaluation/smoothed_score",
                              smoothed_eval_normalized_score, episode_idx)
            writer.add_scalar("evaluation/smoothed_completion",
                              smoothed_eval_completion, episode_idx)

        # Save logs to tensorboard
        writer.add_scalar("training/score", normalized_score, episode_idx)
        writer.add_scalar("training/smoothed_score", smoothed_normalized_score,
                          episode_idx)
        writer.add_scalar("training/completion", np.mean(completion),
                          episode_idx)
        writer.add_scalar("training/smoothed_completion",
                          np.mean(smoothed_completion), episode_idx)
        writer.add_scalar("training/nb_steps", nb_steps, episode_idx)
        writer.add_histogram("actions/distribution", np.array(actions_taken),
                             episode_idx)
        writer.add_scalar("actions/nothing",
                          action_probs[RailEnvActions.DO_NOTHING], episode_idx)
        writer.add_scalar("actions/left",
                          action_probs[RailEnvActions.MOVE_LEFT], episode_idx)
        writer.add_scalar("actions/forward",
                          action_probs[RailEnvActions.MOVE_FORWARD],
                          episode_idx)
        writer.add_scalar("actions/right",
                          action_probs[RailEnvActions.MOVE_RIGHT], episode_idx)
        writer.add_scalar("actions/stop",
                          action_probs[RailEnvActions.STOP_MOVING],
                          episode_idx)
        writer.add_scalar("training/epsilon", eps_start, episode_idx)
        writer.add_scalar("training/buffer_size", len(policy.memory),
                          episode_idx)
        writer.add_scalar("training/loss", policy.loss, episode_idx)
        writer.add_scalar("timer/reset", reset_timer.get(), episode_idx)
        writer.add_scalar("timer/step", step_timer.get(), episode_idx)
        writer.add_scalar("timer/learn", learn_timer.get(), episode_idx)
        writer.add_scalar("timer/preproc", preproc_timer.get(), episode_idx)
        writer.add_scalar("timer/total", training_timer.get_current(),
                          episode_idx)
示例#7
0
def eval_policy(env_params, checkpoint, n_eval_episodes, max_steps,
                action_size, state_size, seed, render, allow_skipping,
                allow_caching):
    # Evaluation is faster on CPU (except if you use a really huge policy)
    parameters = {'use_gpu': False}

    policy = DDDQNPolicy(state_size,
                         action_size,
                         Namespace(**parameters),
                         evaluation_mode=True)
    policy.qnetwork_local = torch.load(checkpoint)

    env_params = Namespace(**env_params)

    # Environment parameters
    n_agents = env_params.n_agents
    x_dim = env_params.x_dim
    y_dim = env_params.y_dim
    n_cities = env_params.n_cities
    max_rails_between_cities = env_params.max_rails_between_cities
    max_rails_in_city = env_params.max_rails_in_city

    # Malfunction and speed profiles
    # TODO pass these parameters properly from main!
    malfunction_parameters = MalfunctionParameters(
        malfunction_rate=1. / 2000,  # Rate of malfunctions
        min_duration=20,  # Minimal duration
        max_duration=50  # Max duration
    )

    # Only fast trains in Round 1
    speed_profiles = {
        1.: 1.0,  # Fast passenger train
        1. / 2.: 0.0,  # Fast freight train
        1. / 3.: 0.0,  # Slow commuter train
        1. / 4.: 0.0  # Slow freight train
    }

    # Observation parameters
    observation_tree_depth = env_params.observation_tree_depth
    observation_radius = env_params.observation_radius
    observation_max_path_depth = env_params.observation_max_path_depth

    # Observation builder
    predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth,
                                         predictor=predictor)

    # Setup the environment
    env = RailEnv(
        width=x_dim,
        height=y_dim,
        rail_generator=sparse_rail_generator(
            max_num_cities=n_cities,
            grid_mode=False,
            max_rails_between_cities=max_rails_between_cities,
            max_rails_in_city=max_rails_in_city,
        ),
        schedule_generator=sparse_schedule_generator(speed_profiles),
        number_of_agents=n_agents,
        malfunction_generator_and_process_data=malfunction_from_params(
            malfunction_parameters),
        obs_builder_object=tree_observation)

    if render:
        env_renderer = RenderTool(env, gl="PGL")

    action_dict = dict()
    scores = []
    completions = []
    nb_steps = []
    inference_times = []
    preproc_times = []
    agent_times = []
    step_times = []

    for episode_idx in range(n_eval_episodes):
        seed += 1

        inference_timer = Timer()
        preproc_timer = Timer()
        agent_timer = Timer()
        step_timer = Timer()

        step_timer.start()
        obs, info = env.reset(regenerate_rail=True,
                              regenerate_schedule=True,
                              random_seed=seed)
        step_timer.end()

        agent_obs = [None] * env.get_num_agents()
        score = 0.0

        if render:
            env_renderer.set_new_rail()

        final_step = 0
        skipped = 0

        nb_hit = 0
        agent_last_obs = {}
        agent_last_action = {}

        for step in range(max_steps - 1):
            if allow_skipping and check_if_all_blocked(env):
                # FIXME why -1? bug where all agents are "done" after max_steps!
                skipped = max_steps - step - 1
                final_step = max_steps - 2
                n_unfinished_agents = sum(not done[idx]
                                          for idx in env.get_agent_handles())
                score -= skipped * n_unfinished_agents
                break

            agent_timer.start()
            for agent in env.get_agent_handles():
                if obs[agent] and info['action_required'][agent]:
                    if agent in agent_last_obs and np.all(
                            agent_last_obs[agent] == obs[agent]):
                        nb_hit += 1
                        action = agent_last_action[agent]

                    else:
                        preproc_timer.start()
                        norm_obs = normalize_observation(
                            obs[agent],
                            tree_depth=observation_tree_depth,
                            observation_radius=observation_radius)
                        preproc_timer.end()

                        inference_timer.start()
                        action = policy.act(norm_obs, eps=0.0)
                        inference_timer.end()

                    action_dict.update({agent: action})

                    if allow_caching:
                        agent_last_obs[agent] = obs[agent]
                        agent_last_action[agent] = action
            agent_timer.end()

            step_timer.start()
            obs, all_rewards, done, info = env.step(action_dict)
            step_timer.end()

            if render:
                env_renderer.render_env(show=True,
                                        frames=False,
                                        show_observations=False,
                                        show_predictions=False)

                if step % 100 == 0:
                    print("{}/{}".format(step, max_steps - 1))

            for agent in env.get_agent_handles():
                score += all_rewards[agent]

            final_step = step

            if done['__all__']:
                break

        normalized_score = score / (max_steps * env.get_num_agents())
        scores.append(normalized_score)

        tasks_finished = sum(done[idx] for idx in env.get_agent_handles())
        completion = tasks_finished / max(1, env.get_num_agents())
        completions.append(completion)

        nb_steps.append(final_step)

        inference_times.append(inference_timer.get())
        preproc_times.append(preproc_timer.get())
        agent_times.append(agent_timer.get())
        step_times.append(step_timer.get())

        skipped_text = ""
        if skipped > 0:
            skipped_text = "\t⚡ Skipped {}".format(skipped)

        hit_text = ""
        if nb_hit > 0:
            hit_text = "\t⚡ Hit {} ({:.1f}%)".format(nb_hit, (100 * nb_hit) /
                                                     (n_agents * final_step))

        print(
            "☑️  Score: {:.3f} \tDone: {:.1f}% \tNb steps: {:.3f} "
            "\t🍭 Seed: {}"
            "\t🚉 Env: {:.3f}s  "
            "\t🤖 Agent: {:.3f}s (per step: {:.3f}s) \t[preproc: {:.3f}s \tinfer: {:.3f}s]"
            "{}{}".format(normalized_score, completion * 100.0, final_step,
                          seed, step_timer.get(), agent_timer.get(),
                          agent_timer.get() / final_step, preproc_timer.get(),
                          inference_timer.get(), skipped_text, hit_text))

    return scores, completions, nb_steps, agent_times, step_times
if new:
    tree_observation = TreeObsForRailEnv(max_depth=max_depth, predictor=predictor)
else:
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor)

# Calculates state and action sizes
if new:
    n_nodes = observation_tree_depth
    state_size = (11 +1)* n_nodes-1
else:
    n_nodes = sum([np.power(4, i) for i in range(observation_tree_depth + 1)])
    state_size = tree_observation.observation_dim * n_nodes
action_size = 5

# Creates the policy. No GPU on evaluation server.
policy = DDDQNPolicy(state_size, action_size, Namespace(**{'use_gpu': False}), evaluation_mode=True)

if os.path.isfile(checkpoint):
    policy.qnetwork_local = torch.load(checkpoint)
    print("load checkpoint from %s"%(checkpoint))
else:
    print("Checkpoint not found, using untrained policy! (path: {})".format(checkpoint))

#####################################################################
# Main evaluation loop
#####################################################################
evaluation_number = 0

while True:
    evaluation_number += 1
示例#9
0
def eval_policy(env_params, checkpoint, n_eval_episodes, max_steps, seed,
                render):
    # evaluation is faster on CPU, except if you have huge networks
    parameters = {'use_gpu': False}

    policy = DDDQNPolicy(state_size,
                         action_size,
                         Namespace(**parameters),
                         evaluation_mode=True)
    policy.qnetwork_local = torch.load(checkpoint)

    env_params = Namespace(**env_params)

    # Environment parameters
    n_agents = env_params.n_agents
    x_dim = env_params.x_dim
    y_dim = env_params.y_dim
    n_cities = env_params.n_cities
    max_rails_between_cities = env_params.max_rails_between_cities
    max_rails_in_city = env_params.max_rails_in_city

    # Observation parameters
    observation_tree_depth = env_params.observation_tree_depth
    observation_radius = env_params.observation_radius
    observation_max_path_depth = env_params.observation_max_path_depth

    # Malfunction and speed profiles
    # TODO pass these parameters properly from main!
    malfunction_parameters = MalfunctionParameters(
        malfunction_rate=1. / 2000,  # Rate of malfunctions
        min_duration=20,  # Minimal duration
        max_duration=50  # Max duration
    )
    speed_profiles = {
        1.: 1.0,  # Fast passenger train
        1. / 2.: 0.0,  # Fast freight train
        1. / 3.: 0.0,  # Slow commuter train
        1. / 4.: 0.0  # Slow freight train
    }

    # Observation builder
    predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth,
                                         predictor=predictor)

    # Setup the environment
    env = RailEnv(
        width=x_dim,
        height=y_dim,
        rail_generator=sparse_rail_generator(
            max_num_cities=n_cities,
            grid_mode=False,
            max_rails_between_cities=max_rails_between_cities,
            max_rails_in_city=max_rails_in_city),
        schedule_generator=sparse_schedule_generator(speed_profiles),
        number_of_agents=n_agents,
        malfunction_generator_and_process_data=malfunction_from_params(
            malfunction_parameters),
        obs_builder_object=tree_observation,
        random_seed=seed)
    env.reset(True, True)

    if render:
        env_renderer = RenderTool(env, gl="PGL")

    action_dict = dict()
    scores = []
    completions = []
    nb_steps = []
    inference_times = []
    preproc_times = []
    agent_times = []
    step_times = []

    for episode_idx in range(n_eval_episodes):
        inference_timer = Timer()
        preproc_timer = Timer()
        agent_timer = Timer()
        step_timer = Timer()

        agent_obs = [None] * env.get_num_agents()
        score = 0.0

        step_timer.start()
        obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True)
        step_timer.end()

        if render:
            env_renderer.set_new_rail()

        final_step = 0

        for step in range(max_steps - 1):
            agent_timer.start()
            for agent in env.get_agent_handles():
                if obs[agent]:
                    preproc_timer.start()
                    agent_obs[agent] = normalize_observation(
                        obs[agent],
                        tree_depth=observation_tree_depth,
                        observation_radius=observation_radius)
                    preproc_timer.end()

                action = 0
                if info['action_required'][agent]:
                    inference_timer.start()
                    action = policy.act(agent_obs[agent], eps=0.0)
                    inference_timer.end()
                action_dict.update({agent: action})
            agent_timer.end()

            step_timer.start()
            obs, all_rewards, done, info = env.step(action_dict)
            step_timer.end()

            if render:
                env_renderer.render_env(show=True,
                                        frames=False,
                                        show_observations=False,
                                        show_predictions=False)

            for agent in env.get_agent_handles():
                score += all_rewards[agent]

            final_step = step

            if done['__all__']:
                break

        normalized_score = score / (max_steps * env.get_num_agents())
        scores.append(normalized_score)

        tasks_finished = sum(done[idx] for idx in env.get_agent_handles())
        completion = tasks_finished / max(1, env.get_num_agents())
        completions.append(completion)

        nb_steps.append(final_step)

        inference_times.append(inference_timer.get())
        preproc_times.append(preproc_timer.get())
        agent_times.append(agent_timer.get())
        step_times.append(step_timer.get())

        print(
            "☑️  Score: {:.3f} \tDone: {:.1f}% \tNb steps: {:.3f} "
            "\t🚉 Env: {:.3f}s "
            "\t🤖 Agent: {:.3f}s (per step: {:.3f}s) \t[preproc: {:.3f}s \tinfer: {:.3f}s]"
            .format(normalized_score, completion * 100.0, final_step,
                    step_timer.get(), agent_timer.get(),
                    agent_timer.get() / final_step, preproc_timer.get(),
                    inference_timer.get()))

    return scores, completions, nb_steps, agent_times, step_times
def train_agent(n_episodes):
    # Environment parameters
    n_agents = 1
    x_dim = 25
    y_dim = 25
    n_cities = 4
    max_rails_between_cities = 2
    max_rails_in_city = 3
    seed = 42

    # Observation parameters
    observation_tree_depth = 2
    observation_radius = 10

    # Exploration parameters
    eps_start = 1.0
    eps_end = 0.01
    eps_decay = 0.997  # for 2500ts

    # Set the seeds
    random.seed(seed)
    np.random.seed(seed)

    # Observation builder
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth)

    # Setup the environment
    env = RailEnv(width=x_dim,
                  height=y_dim,
                  rail_generator=sparse_rail_generator(
                      max_num_cities=n_cities,
                      seed=seed,
                      grid_mode=False,
                      max_rails_between_cities=max_rails_between_cities,
                      max_rails_in_city=max_rails_in_city),
                  schedule_generator=sparse_schedule_generator(),
                  number_of_agents=n_agents,
                  obs_builder_object=tree_observation)

    env.reset(True, True)

    # Calculate the state size given the depth of the tree observation and the number of features
    n_features_per_node = env.obs_builder.observation_dim
    n_nodes = 0
    for i in range(observation_tree_depth + 1):
        n_nodes += np.power(4, i)
    state_size = n_features_per_node * n_nodes

    # The action space of flatland is 5 discrete actions
    action_size = 5

    # Max number of steps per episode
    # This is the official formula used during evaluations
    max_steps = int(4 * 2 * (env.height + env.width + (n_agents / n_cities)))

    action_dict = dict()

    # And some variables to keep track of the progress
    scores_window = deque(maxlen=100)  # todo smooth when rendering instead
    completion_window = deque(maxlen=100)
    scores = []
    completion = []
    action_count = [0] * action_size
    agent_obs = [None] * env.get_num_agents()
    agent_prev_obs = [None] * env.get_num_agents()
    agent_prev_action = [2] * env.get_num_agents()
    update_values = False

    # Training parameters
    training_parameters = {
        'buffer_size': int(1e5),
        'batch_size': 32,
        'update_every': 8,
        'learning_rate': 0.5e-4,
        'tau': 1e-3,
        'gamma': 0.99,
        'buffer_min_size': 0,
        'hidden_size': 256,
        'use_gpu': False
    }

    # Double Dueling DQN policy
    policy = DDDQNPolicy(state_size, action_size,
                         Namespace(**training_parameters))

    for episode_idx in range(n_episodes):
        score = 0

        # Reset environment
        obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True)

        # Build agent specific observations
        for agent in env.get_agent_handles():
            if obs[agent]:
                agent_obs[agent] = normalize_observation(
                    obs[agent],
                    observation_tree_depth,
                    observation_radius=observation_radius)
                agent_prev_obs[agent] = agent_obs[agent].copy()

        # Run episode
        for step in range(max_steps - 1):
            for agent in env.get_agent_handles():
                if info['action_required'][agent]:
                    # If an action is required, we want to store the obs at that step as well as the action
                    update_values = True
                    action = policy.act(agent, agent_obs[agent], eps=eps_start)
                    action_count[action] += 1
                else:
                    update_values = False
                    action = 0
                action_dict.update({agent: action})

            # Environment step
            next_obs, all_rewards, done, info = env.step(action_dict)

            # Update replay buffer and train agent
            for agent in range(env.get_num_agents()):
                # Only update the values when we are done or when an action was taken and thus relevant information is present
                if update_values or done[agent]:
                    policy.step(agent, agent_prev_obs[agent],
                                agent_prev_action[agent], all_rewards[agent],
                                agent_obs[agent], done[agent])

                    agent_prev_obs[agent] = agent_obs[agent].copy()
                    agent_prev_action[agent] = action_dict[agent]

                if next_obs[agent]:
                    agent_obs[agent] = normalize_observation(
                        next_obs[agent],
                        observation_tree_depth,
                        observation_radius=10)

                score += all_rewards[agent]

            if done['__all__']:
                break

        # Epsilon decay
        eps_start = max(eps_end, eps_decay * eps_start)

        # Collection information about training
        tasks_finished = np.sum(
            [int(done[idx]) for idx in env.get_agent_handles()])
        completion_window.append(tasks_finished / max(1, env.get_num_agents()))
        scores_window.append(score / (max_steps * env.get_num_agents()))
        completion.append((np.mean(completion_window)))
        scores.append(np.mean(scores_window))
        action_probs = action_count / np.sum(action_count)

        if episode_idx % 100 == 0:
            end = "\n"
            torch.save(policy.qnetwork_local,
                       './checkpoints/single-' + str(episode_idx) + '.pth')
            action_count = [1] * action_size
        else:
            end = " "

        print(
            '\rTraining {} agents on {}x{}\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'
            .format(env.get_num_agents(), x_dim, y_dim, episode_idx,
                    np.mean(scores_window), 100 * np.mean(completion_window),
                    eps_start, action_probs),
            end=end)

    # Plot overall training progress at the end
    plt.plot(scores)
    plt.show()

    plt.plot(completion)
    plt.show()
示例#11
0
        break

    print("Env Path : ", remote_client.current_env_path)
    print("Env Creation Time : ", env_creation_time)

    local_env = remote_client.env
    nb_agents = len(local_env.agents)
    max_nb_steps = local_env._max_episode_steps

    tree_observation.set_env(local_env)
    tree_observation.reset()

    # Creates the policy. No GPU on evaluation server.
    if load_policy == "DDDQN":
        policy = DDDQNPolicy(state_size,
                             get_action_size(),
                             Namespace(**{'use_gpu': False}),
                             evaluation_mode=True)
    elif load_policy == "PPO":
        policy = PPOPolicy(state_size, get_action_size())
    elif load_policy == "DeadLockAvoidance":
        policy = DeadLockAvoidanceAgent(local_env,
                                        get_action_size(),
                                        enable_eps=False)
    elif load_policy == "DeadLockAvoidanceWithDecision":
        # inter_policy = PPOPolicy(state_size, get_action_size(), use_replay_buffer=False, in_parameters=train_params)
        inter_policy = DDDQNPolicy(state_size,
                                   get_action_size(),
                                   Namespace(**{'use_gpu': False}),
                                   evaluation_mode=True)
        policy = DeadLockAvoidanceWithDecisionAgent(local_env, state_size,
                                                    get_action_size(),
def train_agent(env_params, train_params):
    # Environment parameters
    n_agents = env_params.n_agents
    x_dim = env_params.x_dim
    y_dim = env_params.y_dim
    n_cities = env_params.n_cities
    max_rails_between_cities = env_params.max_rails_between_cities
    max_rails_in_city = env_params.max_rails_in_city
    seed = env_params.seed

    # Observation parameters
    observation_tree_depth = env_params.observation_tree_depth
    observation_radius = env_params.observation_radius
    observation_max_path_depth = env_params.observation_max_path_depth

    # Training parameters
    eps_start = train_params.eps_start
    eps_end = train_params.eps_end
    eps_decay = train_params.eps_decay
    n_episodes = train_params.n_episodes
    checkpoint_interval = train_params.checkpoint_interval
    n_eval_episodes = train_params.n_evaluation_episodes

    # Set the seeds
    random.seed(seed)
    np.random.seed(seed)

    # Break agents from time to time
    malfunction_parameters = MalfunctionParameters(
        malfunction_rate=1. / 10000,  # Rate of malfunctions
        min_duration=15,  # Minimal duration
        max_duration=50  # Max duration
    )

    # Observation builder
    predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor)

    # Fraction of train which each speed
    speed_profiles = {
        1.: 1.0,  # Fast passenger train
        1. / 2.: 0.0,  # Fast freight train
        1. / 3.: 0.0,  # Slow commuter train
        1. / 4.: 0.0  # Slow freight train
    }

    # Setup the environment
    env = RailEnv(
        width=x_dim,
        height=y_dim,
        rail_generator=sparse_rail_generator(
            max_num_cities=n_cities,
            grid_mode=False,
            max_rails_between_cities=max_rails_between_cities,
            max_rails_in_city=max_rails_in_city
        ),
        schedule_generator=sparse_schedule_generator(speed_profiles),
        number_of_agents=n_agents,
        malfunction_generator_and_process_data=malfunction_from_params(malfunction_parameters),
        obs_builder_object=tree_observation,
        random_seed=seed
    )

    env.reset(regenerate_schedule=True, regenerate_rail=True)

    # Setup renderer
    if train_params.render:
        env_renderer = RenderTool(env, gl="PGL")

    # Calculate the state size given the depth of the tree observation and the number of features
    n_features_per_node = env.obs_builder.observation_dim
    n_nodes = 0
    for i in range(observation_tree_depth + 1):
        n_nodes += np.power(4, i)
    state_size = n_features_per_node * n_nodes

    # The action space of flatland is 5 discrete actions
    action_size = 5

    # Max number of steps per episode
    # This is the official formula used during evaluations
    # See details in flatland.envs.schedule_generators.sparse_schedule_generator
    max_steps = int(4 * 2 * (env.height + env.width + (n_agents / n_cities)))

    action_count = [0] * action_size
    action_dict = dict()
    agent_obs = [None] * env.get_num_agents()
    agent_prev_obs = [None] * env.get_num_agents()
    agent_prev_action = [2] * env.get_num_agents()
    update_values = False
    smoothed_normalized_score = -1.0
    smoothed_eval_normalized_score = -1.0
    smoothed_completion = 0.0
    smoothed_eval_completion = 0.0

    # Double Dueling DQN policy
    policy = DDDQNPolicy(state_size, action_size, train_params)

    # TensorBoard writer
    writer = SummaryWriter()
    writer.add_hparams(vars(train_params), {})
    writer.add_hparams(vars(env_params), {})

    training_timer = Timer()
    training_timer.start()

    print("\n🚉 Training {} trains on {}x{} grid for {} episodes, evaluating on {} episodes every {} episodes.\n"
          .format(env.get_num_agents(), x_dim, y_dim, n_episodes, n_eval_episodes, checkpoint_interval))

    for episode_idx in range(n_episodes + 1):
        # Timers
        step_timer = Timer()
        reset_timer = Timer()
        learn_timer = Timer()
        preproc_timer = Timer()

        # Reset environment
        reset_timer.start()
        obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True)
        reset_timer.end()

        if train_params.render:
            env_renderer.set_new_rail()

        score = 0
        nb_steps = 0
        actions_taken = []

        # Build agent specific observations
        for agent in env.get_agent_handles():
            if obs[agent]:
                agent_obs[agent] = normalize_observation(obs[agent], observation_tree_depth, observation_radius=observation_radius)
                agent_prev_obs[agent] = agent_obs[agent].copy()

        # Run episode
        for step in range(max_steps - 1):
            for agent in env.get_agent_handles():
                if info['action_required'][agent]:
                    # If an action is required, we want to store the obs at that step as well as the action
                    update_values = True
                    action = policy.act(agent_obs[agent], eps=eps_start)
                    action_count[action] += 1
                    actions_taken.append(action)
                else:
                    update_values = False
                    action = 0
                action_dict.update({agent: action})

            # Environment step
            step_timer.start()
            next_obs, all_rewards, done, info = env.step(action_dict)
            step_timer.end()

            if train_params.render and episode_idx % checkpoint_interval == 0:
                env_renderer.render_env(
                    show=True,
                    frames=False,
                    show_observations=False,
                    show_predictions=False
                )

            for agent in range(env.get_num_agents()):
                # Update replay buffer and train agent
                # Only update the values when we are done or when an action was taken and thus relevant information is present
                if update_values or done[agent]:
                    learn_timer.start()
                    policy.step(agent_prev_obs[agent], agent_prev_action[agent], all_rewards[agent], agent_obs[agent], done[agent])
                    learn_timer.end()

                    agent_prev_obs[agent] = agent_obs[agent].copy()
                    agent_prev_action[agent] = action_dict[agent]

                # Preprocess the new observations
                if next_obs[agent]:
                    preproc_timer.start()
                    agent_obs[agent] = normalize_observation(next_obs[agent], observation_tree_depth, observation_radius=observation_radius)
                    preproc_timer.end()

                score += all_rewards[agent]

            nb_steps = step

            if done['__all__']:
                break

        # Epsilon decay
        eps_start = max(eps_end, eps_decay * eps_start)

        # Collection information about training
        tasks_finished = sum(done[idx] for idx in env.get_agent_handles())
        completion = tasks_finished / max(1, env.get_num_agents())
        normalized_score = score / (max_steps * env.get_num_agents())
        action_probs = action_count / np.sum(action_count)
        action_count = [1] * action_size

        # Smoothed values for terminal display and for more stable hyper-parameter tuning
        smoothing = 0.99
        smoothed_normalized_score = smoothed_normalized_score * smoothing + normalized_score * (1.0 - smoothing)
        smoothed_completion = smoothed_completion * smoothing + completion * (1.0 - smoothing)

        # Print logs
        if episode_idx % checkpoint_interval == 0:
            torch.save(policy.qnetwork_local, './checkpoints/multi-' + str(episode_idx) + '.pth')
            if train_params.render:
                env_renderer.close_window()

        print(
            '\r🚂 Episode {}'
            '\t 🏆 Score: {:.3f}'
            ' Avg: {:.3f}'
            '\t 💯 Done: {:.2f}%'
            ' Avg: {:.2f}%'
            '\t 🎲 Epsilon: {:.2f} '
            '\t 🔀 Action Probs: {}'.format(
                episode_idx,
                normalized_score,
                smoothed_normalized_score,
                100 * completion,
                100 * smoothed_completion,
                eps_start,
                format_action_prob(action_probs)
            ), end=" ")

        # Evaluate policy
        if episode_idx % train_params.checkpoint_interval == 0:
            scores, completions, nb_steps_eval = eval_policy(env, policy, n_eval_episodes, max_steps)
            writer.add_scalar("evaluation/scores_min", np.min(scores), episode_idx)
            writer.add_scalar("evaluation/scores_max", np.max(scores), episode_idx)
            writer.add_scalar("evaluation/scores_mean", np.mean(scores), episode_idx)
            writer.add_scalar("evaluation/scores_std", np.std(scores), episode_idx)
            writer.add_histogram("evaluation/scores", np.array(scores), episode_idx)
            writer.add_scalar("evaluation/completions_min", np.min(completions), episode_idx)
            writer.add_scalar("evaluation/completions_max", np.max(completions), episode_idx)
            writer.add_scalar("evaluation/completions_mean", np.mean(completions), episode_idx)
            writer.add_scalar("evaluation/completions_std", np.std(completions), episode_idx)
            writer.add_histogram("evaluation/completions", np.array(completions), episode_idx)
            writer.add_scalar("evaluation/nb_steps_min", np.min(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_max", np.max(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_mean", np.mean(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_std", np.std(nb_steps_eval), episode_idx)
            writer.add_histogram("evaluation/nb_steps", np.array(nb_steps_eval), episode_idx)

            smoothing = 0.9
            smoothed_eval_normalized_score = smoothed_eval_normalized_score * smoothing + np.mean(scores) * (1.0 - smoothing)
            smoothed_eval_completion = smoothed_eval_completion * smoothing + np.mean(completions) * (1.0 - smoothing)
            writer.add_scalar("evaluation/smoothed_score", smoothed_eval_normalized_score, episode_idx)
            writer.add_scalar("evaluation/smoothed_completion", smoothed_eval_completion, episode_idx)

        # Save logs to tensorboard
        writer.add_scalar("training/score", normalized_score, episode_idx)
        writer.add_scalar("training/smoothed_score", smoothed_normalized_score, episode_idx)
        writer.add_scalar("training/completion", np.mean(completion), episode_idx)
        writer.add_scalar("training/smoothed_completion", np.mean(smoothed_completion), episode_idx)
        writer.add_scalar("training/nb_steps", nb_steps, episode_idx)
        writer.add_histogram("actions/distribution", np.array(actions_taken), episode_idx)
        writer.add_scalar("actions/nothing", action_probs[RailEnvActions.DO_NOTHING], episode_idx)
        writer.add_scalar("actions/left", action_probs[RailEnvActions.MOVE_LEFT], episode_idx)
        writer.add_scalar("actions/forward", action_probs[RailEnvActions.MOVE_FORWARD], episode_idx)
        writer.add_scalar("actions/right", action_probs[RailEnvActions.MOVE_RIGHT], episode_idx)
        writer.add_scalar("actions/stop", action_probs[RailEnvActions.STOP_MOVING], episode_idx)
        writer.add_scalar("training/epsilon", eps_start, episode_idx)
        writer.add_scalar("training/buffer_size", len(policy.memory), episode_idx)
        writer.add_scalar("training/loss", policy.loss, episode_idx)
        writer.add_scalar("timer/reset", reset_timer.get(), episode_idx)
        writer.add_scalar("timer/step", step_timer.get(), episode_idx)
        writer.add_scalar("timer/learn", learn_timer.get(), episode_idx)
        writer.add_scalar("timer/preproc", preproc_timer.get(), episode_idx)
        writer.add_scalar("timer/total", training_timer.get_current(), episode_idx)
示例#13
0
class MultiDecisionAgent(LearningPolicy):
    def __init__(self, state_size, action_size, in_parameters=None):
        print(">> MultiDecisionAgent")
        super(MultiDecisionAgent, self).__init__()
        self.state_size = state_size
        self.action_size = action_size
        self.in_parameters = in_parameters
        self.memory = DummyMemory()
        self.loss = 0

        self.ppo_policy = PPOPolicy(state_size,
                                    action_size,
                                    use_replay_buffer=False,
                                    in_parameters=in_parameters)
        self.dddqn_policy = DDDQNPolicy(state_size, action_size, in_parameters)
        self.policy_selector = PPOPolicy(state_size, 2)

    def step(self, handle, state, action, reward, next_state, done):
        self.ppo_policy.step(handle, state, action, reward, next_state, done)
        self.dddqn_policy.step(handle, state, action, reward, next_state, done)
        select = self.policy_selector.act(handle, state, 0.0)
        self.policy_selector.step(handle, state, select, reward, next_state,
                                  done)

    def act(self, handle, state, eps=0.):
        select = self.policy_selector.act(handle, state, eps)
        if select == 0:
            return self.dddqn_policy.act(handle, state, eps)
        return self.policy_selector.act(handle, state, eps)

    def save(self, filename):
        self.ppo_policy.save(filename)
        self.dddqn_policy.save(filename)
        self.policy_selector.save(filename)

    def load(self, filename):
        self.ppo_policy.load(filename)
        self.dddqn_policy.load(filename)
        self.policy_selector.load(filename)

    def start_step(self, train):
        self.ppo_policy.start_step(train)
        self.dddqn_policy.start_step(train)
        self.policy_selector.start_step(train)

    def end_step(self, train):
        self.ppo_policy.end_step(train)
        self.dddqn_policy.end_step(train)
        self.policy_selector.end_step(train)

    def start_episode(self, train):
        self.ppo_policy.start_episode(train)
        self.dddqn_policy.start_episode(train)
        self.policy_selector.start_episode(train)

    def end_episode(self, train):
        self.ppo_policy.end_episode(train)
        self.dddqn_policy.end_episode(train)
        self.policy_selector.end_episode(train)

    def load_replay_buffer(self, filename):
        self.ppo_policy.load_replay_buffer(filename)
        self.dddqn_policy.load_replay_buffer(filename)
        self.policy_selector.load_replay_buffer(filename)

    def test(self):
        self.ppo_policy.test()
        self.dddqn_policy.test()
        self.policy_selector.test()

    def reset(self, env: RailEnv):
        self.ppo_policy.reset(env)
        self.dddqn_policy.reset(env)
        self.policy_selector.reset(env)

    def clone(self):
        multi_descision_agent = MultiDecisionAgent(self.state_size,
                                                   self.action_size,
                                                   self.in_parameters)
        multi_descision_agent.ppo_policy = self.ppo_policy.clone()
        multi_descision_agent.dddqn_policy = self.dddqn_policy.clone()
        multi_descision_agent.policy_selector = self.policy_selector.clone()
        return multi_descision_agent