def test_regression_report(): regressors = RegressorsFactory() regressors.add_regressor('gb', GradientBoostingRegressor(n_estimators=10)) regressors.add_regressor('rf', RandomForestRegressor()) regressors.add_regressor('ada', AdaBoostRegressor(n_estimators=10)) X, y = generate_regression_sample(1000, 5) regressors.fit(X, y) X, y = generate_regression_sample(1000, 5) test_lds = LabeledDataStorage(X, y, sample_weight=None) regression_report = regressors.test_on_lds(test_lds) val = numpy.mean(X['column0']) _regression_mask_report(regression_report, "column0 > %f" % val, X) _regression_mask_report(regression_report, lambda x: numpy.array(x['column0']) < val, X) _regression_mask_report(regression_report, None, X)
def test_factory(): factory = RegressorsFactory() try: from rep.estimators.tmva import TMVARegressor factory.add_regressor( 'tmva', TMVARegressor( factory_options="Silent=True:V=False:DrawProgressBar=False")) except ImportError: pass factory.add_regressor('rf', RandomForestRegressor(n_estimators=10)) factory.add_regressor('ada', AdaBoostRegressor(n_estimators=20)) X, y, sample_weight = generate_classification_data() assert factory == factory.fit(X, y, sample_weight=sample_weight, features=list(X.columns)) values = factory.predict(X) for cl in factory.values(): assert list(cl.features) == list(X.columns) for key, val in values.items(): score = mean_squared_error(y, val) print(score) assert score < 0.2 for key, iterator in factory.staged_predict(X).items(): assert key != 'tmva', 'tmva does not support staged pp' for p in iterator: assert p.shape == (len(X), ) # checking that last iteration coincides with previous assert numpy.all(p == values[key]) # testing picklability dump_string = cPickle.dumps(factory) clf_loaded = cPickle.loads(dump_string) assert type(factory) == type(clf_loaded) probs1 = factory.predict(X) probs2 = clf_loaded.predict(X) for key, val in probs1.items(): assert numpy.all(val == probs2[key]), 'something strange was loaded' report = RegressionReport({'rf': factory['rf']}, LabeledDataStorage(X, y, sample_weight)) report.feature_importance_shuffling(mean_squared_mod).plot(new_plot=True, figsize=(18, 3)) report = factory.test_on_lds(LabeledDataStorage(X, y, sample_weight)) report = factory.test_on(X, y, sample_weight=sample_weight) report.feature_importance() report.features_correlation_matrix() report.predictions_scatter() val = numpy.mean(X['column0']) report_mask(report, "column0 > %f" % val, X) report_mask(report, lambda x: numpy.array(x['column0']) < val, X) report_mask(report, None, X)
def test_factory(): factory = RegressorsFactory() try: from rep.estimators.tmva import TMVARegressor factory.add_regressor('tmva', TMVARegressor()) except ImportError: pass factory.add_regressor('rf', RandomForestRegressor(n_estimators=10)) factory.add_regressor('ada', AdaBoostRegressor(n_estimators=20)) X, y, sample_weight = generate_classification_data() assert factory == factory.fit(X, y, sample_weight=sample_weight, features=list(X.columns)) values = factory.predict(X) for cl in factory.values(): assert list(cl.features) == list(X.columns) for key, val in values.items(): score = mean_squared_error(y, val) print(score) assert score < 0.2 for key, iterator in factory.staged_predict(X).items(): assert key != 'tmva', 'tmva does not support staged pp' for p in iterator: assert p.shape == (len(X), ) # checking that last iteration coincides with previous assert numpy.all(p == values[key]) # testing picklability dump_string = cPickle.dumps(factory) clf_loaded = cPickle.loads(dump_string) assert type(factory) == type(clf_loaded) probs1 = factory.predict(X) probs2 = clf_loaded.predict(X) for key, val in probs1.items(): assert numpy.all(val == probs2[key]), 'something strange was loaded' report = RegressionReport({'rf': factory['rf']}, LabeledDataStorage(X, y, sample_weight)) report.feature_importance_shuffling(mean_squared_mod).plot(new_plot=True, figsize=(18, 3)) report = factory.test_on_lds(LabeledDataStorage(X, y, sample_weight)) report = factory.test_on(X, y, sample_weight=sample_weight) report.feature_importance() report.features_correlation_matrix() report.predictions_scatter() val = numpy.mean(X['column0']) report_mask(report, "column0 > %f" % val, X) report_mask(report, lambda x: numpy.array(x['column0']) < val, X) report_mask(report, None, X)