def test_pybrain_params(): check_params(PyBrainClassifier, layers=[1, 2], epochs=5, use_rprop=True, hiddenclass=['LinearLayer']) check_params(PyBrainRegressor, layers=[1, 2], epochs=5, etaplus=1.3, hiddenclass=['LinearLayer'], learningrate=0.1)
def test_neurolab_params(): check_params(NeurolabClassifier, layers=[1, 2], epochs=5, trainf='blah', cn=2, omnomnom=4) check_params(NeurolabRegressor, layers=[1, 2], epochs=5, trainf='blah', cn=2, omnomnom=4)
def test_theanets_params(): check_params(TheanetsClassifier, layers=[1, 2], scaler=False, trainers=[{}, { 'optimize': 'nag' }]) check_params(TheanetsRegressor, layers=[1, 2], scaler=False, trainers=[{}, { 'optimize': 'nag' }])
def test_theanets_params(): check_params(TheanetsClassifier, layers=[1, 2], scaler=False, trainers=[{}, { 'algo': 'nag', 'learning_rate': 0.1 }]) check_params(TheanetsRegressor, layers=[1, 2], scaler=False, trainers=[{}, { 'algo': 'nag', 'learning_rate': 0.1 }])
def test_theanets_params(): check_params(TheanetsClassifier, layers=[1, 2], scaler=False, trainers=[{}, {'optimize': 'nag'}]) check_params(TheanetsRegressor, layers=[1, 2], scaler=False, trainers=[{}, {'optimize': 'nag'}])
def test_theanets_params(): check_params(TheanetsClassifier, layers=[1, 2], scaler=False, trainers=[{}, {'algo': 'nag', 'learning_rate': 0.1}]) check_params(TheanetsRegressor, layers=[1, 2], scaler=False, trainers=[{}, {'algo': 'nag', 'learning_rate': 0.1}])