def output_results(results_dir, results_file, run_time, rampup, ts_interval, user_group_configs=None, xml_reports=False): results = Results(results_dir + results_file, run_time) report = reportwriter.Report(results_dir) print 'transactions: %i' % results.total_transactions print 'errors: %i' % results.total_errors print '' print 'test start: %s' % results.start_datetime print 'test finish: %s' % results.finish_datetime print '' # write the results in XML if xml_reports: reportwriterxml.write_jmeter_output(results.resp_stats_list, results_dir) report.write_line('<h1>Performance Results Report</h1>') report.write_line('<h2>Summary</h2>') report.write_line('<div class="summary">') report.write_line('<b>transactions:</b> %d<br />' % results.total_transactions) report.write_line('<b>errors:</b> %d<br />' % results.total_errors) report.write_line('<b>run time:</b> %d secs<br />' % run_time) report.write_line('<b>rampup:</b> %d secs<br /><br />' % rampup) report.write_line('<b>test start:</b> %s<br />' % results.start_datetime) report.write_line('<b>test finish:</b> %s<br /><br />' % results.finish_datetime) report.write_line( '<b>time-series interval:</b> %s secs<br /><br /><br />' % ts_interval) if user_group_configs: report.write_line('<b>workload configuration:</b><br /><br />') report.write_line('<table>') report.write_line( '<tr><th>group name</th><th>threads</th><th>script name</th></tr>') for user_group_config in user_group_configs: report.write_line( '<tr><td>%s</td><td>%d</td><td>%s</td></tr>' % (user_group_config.name, user_group_config.num_threads, user_group_config.script_file)) report.write_line('</table>') report.write_line('</div>') report.write_line('<h2>All Transactions</h2>') # all transactions - response times trans_timer_points = [] # [elapsed, timervalue] trans_timer_vals = [] interval_details_vals = [] #list with error details for resp_stats in results.resp_stats_list: t = (resp_stats.elapsed_time, resp_stats.trans_time) interval_details_vals.append( (resp_stats.elapsed_time, resp_stats.trans_time, resp_stats.error)) trans_timer_points.append(t) trans_timer_vals.append(resp_stats.trans_time) graph.resp_graph_raw(trans_timer_points, 'All_Transactions_response_times.png', results_dir) report.write_line('<h3>Transaction Response Summary (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>count</th><th><font color="red"><b>errors</b></font></th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) report.write_line( '<tr><td>%i</td><td><font color="red"><b>%i</b></font></td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % ( results.total_transactions, results.total_errors, min(trans_timer_vals), average(trans_timer_vals), percentile(trans_timer_vals, 80), percentile(trans_timer_vals, 90), percentile(trans_timer_vals, 95), max(trans_timer_vals), standard_dev(trans_timer_vals), )) report.write_line('</table>') # all transactions - interval details avg_resptime_points = {} # {intervalnumber: avg_resptime} percentile_80_resptime_points = {} # {intervalnumber: 80pct_resptime} percentile_90_resptime_points = {} # {intervalnumber: 90pct_resptime} interval_secs = ts_interval #splat_series = split_series(trans_timer_points, interval_secs) splat_series = split_intervals_series(interval_details_vals, interval_secs) report.write_line('<h3>Interval Details (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>interval</th><th>count</th><th><font color="red"><b>errors</b></font></th><th>rate</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) for i, bucket in enumerate(splat_series): interval_start = int((i + 1) * interval_secs) cnt = len(bucket) errors_cnt = 0 seq = [x for x, _ in bucket] for item in bucket: if item[1] != '': errors_cnt += 1 if cnt == 0: report.write_line( '<tr><td>%i</td><td>0</td><td><font color="red"><b>0</b></font></td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></tr>' % (i + 1)) else: rate = cnt / float(interval_secs) mn = min(seq) avg = average(seq) pct_80 = percentile(seq, 80) pct_90 = percentile(seq, 90) pct_95 = percentile(seq, 95) mx = max(seq) stdev = standard_dev(seq) report.write_line( '<tr><td>%i</td><td>%i</td><td><font color="red"><b>%i</b></font></td><td>%.2f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (i + 1, cnt, errors_cnt, rate, mn, avg, pct_80, pct_90, pct_95, mx, stdev)) avg_resptime_points[interval_start] = avg percentile_80_resptime_points[interval_start] = pct_80 percentile_90_resptime_points[interval_start] = pct_90 report.write_line('</table>') graph.resp_graph(avg_resptime_points, percentile_80_resptime_points, percentile_90_resptime_points, 'All_Transactions_response_times_intervals.png', results_dir) report.write_line('<h3>Graphs</h3>') report.write_line('<h4>Response Time: %s sec time-series</h4>' % ts_interval) report.write_line( '<img src="All_Transactions_response_times_intervals.png"></img>') report.write_line('<h4>Response Time: raw data (all points)</h4>') report.write_line('<img src="All_Transactions_response_times.png"></img>') report.write_line('<h4>Throughput: 5 sec time-series</h4>') report.write_line('<img src="All_Transactions_throughput.png"></img>') # all transactions - throughput throughput_points = {} # {intervalnumber: numberofrequests} interval_secs = ts_interval splat_series = split_series(trans_timer_points, interval_secs) for i, bucket in enumerate(splat_series): throughput_points[int( (i + 1) * interval_secs)] = (len(bucket) / interval_secs) graph.tp_graph(throughput_points, 'All_Transactions_throughput.png', results_dir) # custom timers for timer_name in sorted(results.uniq_timer_names): custom_timer_vals = [] custom_timer_points = [] custom_timer_points_with_error = [] errors_cnt = 0 for resp_stats in results.resp_stats_list: err = '' if timer_name in resp_stats.custom_timers.values(): err = 'Failed' errors_cnt += 1 try: val = resp_stats.custom_timers[timer_name] custom_timer_points.append((resp_stats.elapsed_time, val)) custom_timer_points_with_error.append( (resp_stats.elapsed_time, val, err)) custom_timer_vals.append(val) except KeyError: pass graph.resp_graph_raw(custom_timer_points, timer_name + '_response_times.png', results_dir) throughput_points = {} # {intervalnumber: numberofrequests} interval_secs = ts_interval splat_series = split_series(custom_timer_points, interval_secs) for i, bucket in enumerate(splat_series): throughput_points[int( (i + 1) * interval_secs)] = (len(bucket) / interval_secs) graph.tp_graph(throughput_points, timer_name + '_throughput.png', results_dir) report.write_line('<hr />') report.write_line('<h2>Custom Timer: %s</h2>' % timer_name) report.write_line('<h3>Timer Summary (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>count</th><th><font color="red"><b>errors</b></font></th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) report.write_line( '<tr><td>%i</td><td><font color="red"><b>%i</b></font></td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (len(custom_timer_vals), errors_cnt, min(custom_timer_vals), average(custom_timer_vals), percentile( custom_timer_vals, 80), percentile(custom_timer_vals, 90), percentile(custom_timer_vals, 95), max(custom_timer_vals), standard_dev(custom_timer_vals))) report.write_line('</table>') # custom timers - interval details avg_resptime_points = {} # {intervalnumber: avg_resptime} percentile_80_resptime_points = {} # {intervalnumber: 80pct_resptime} percentile_90_resptime_points = {} # {intervalnumber: 90pct_resptime} interval_secs = ts_interval #splat_series = split_series(custom_timer_points, interval_secs) splat_series = split_intervals_series(custom_timer_points_with_error, interval_secs) report.write_line('<h3>Interval Details (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>interval</th><th>count</th><th><font color="red"><b>errors</b></font></th><th>rate</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) for i, bucket in enumerate(splat_series): interval_start = int((i + 1) * interval_secs) cnt = len(bucket) errors_cnt = 0 seq = [x for x, _ in bucket] for item in bucket: if item[1] != '': errors_cnt += 1 if cnt == 0: report.write_line( '<tr><td>%i</td><td>0</td><td><font color="red"><b>0</b></font></td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></tr>' % (i + 1)) else: rate = cnt / float(interval_secs) mn = min(seq) avg = average(seq) pct_80 = percentile(seq, 80) pct_90 = percentile(seq, 90) pct_95 = percentile(seq, 95) mx = max(seq) stdev = standard_dev(seq) report.write_line( '<tr><td>%i</td><td>%i</td><td><font color="red"><b>%i</b></font></td><td>%.2f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (i + 1, cnt, errors_cnt, rate, mn, avg, pct_80, pct_90, pct_95, mx, stdev)) avg_resptime_points[interval_start] = avg percentile_80_resptime_points[interval_start] = pct_80 percentile_90_resptime_points[interval_start] = pct_90 report.write_line('</table>') graph.resp_graph(avg_resptime_points, percentile_80_resptime_points, percentile_90_resptime_points, timer_name + '_response_times_intervals.png', results_dir) report.write_line('<h3>Graphs</h3>') report.write_line('<h4>Response Time: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="%s_response_times_intervals.png"></img>' % timer_name) report.write_line('<h4>Response Time: raw data (all points)</h4>') report.write_line('<img src="%s_response_times.png"></img>' % timer_name) report.write_line('<h4>Throughput: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="%s_throughput.png"></img>' % timer_name) ## user group times #for user_group_name in sorted(results.uniq_user_group_names): # ug_timer_vals = [] # for resp_stats in results.resp_stats_list: # if resp_stats.user_group_name == user_group_name: # ug_timer_vals.append(resp_stats.trans_time) # print user_group_name # print 'min: %.3f' % min(ug_timer_vals) # print 'avg: %.3f' % average(ug_timer_vals) # print '80pct: %.3f' % percentile(ug_timer_vals, 80) # print '90pct: %.3f' % percentile(ug_timer_vals, 90) # print '95pct: %.3f' % percentile(ug_timer_vals, 95) # print 'max: %.3f' % max(ug_timer_vals) # print '' report.write_line('<hr />') report.write_closing_html()
def output_results(results_dir, results_file, run_time, rampup, ts_interval, user_group_configs=None, xml_reports=False): results = Results(results_dir + results_file, run_time) report = reportwriter.Report(results_dir) print 'transactions: %i' % results.total_transactions print 'errors: %i' % results.total_errors print '' print 'test start: %s' % results.start_datetime print 'test finish: %s' % results.finish_datetime print '' # write the results in XML if xml_reports: reportwriterxml.write_jmeter_output(results.resp_stats_list, results_dir) report.write_line('<h1>Performance Results Report</h1>') report.write_line('<h2>Summary</h2>') report.write_line('<div class="summary">') report.write_line('<b>transactions:</b> %d<br />' % results.total_transactions) report.write_line('<b>errors:</b> %d<br />' % results.total_errors) report.write_line('<b>run time:</b> %d secs<br />' % run_time) report.write_line('<b>rampup:</b> %d secs<br /><br />' % rampup) report.write_line('<b>test start:</b> %s<br />' % results.start_datetime) report.write_line('<b>test finish:</b> %s<br /><br />' % results.finish_datetime) report.write_line('<b>time-series interval:</b> %s secs<br /><br /><br />' % ts_interval) if user_group_configs: report.write_line('<b>workload configuration:</b><br /><br />') report.write_line('<table>') report.write_line('<tr><th>group name</th><th>threads</th><th>script name</th></tr>') for user_group_config in user_group_configs: report.write_line('<tr><td>%s</td><td>%d</td><td>%s</td></tr>' % (user_group_config.name, user_group_config.num_threads, user_group_config.script_file)) report.write_line('</table>') report.write_line('</div>') report.write_line('<h2>All Transactions</h2>') # all transactions - response times trans_timer_points = [] # [elapsed, timervalue] trans_timer_vals = [] for resp_stats in results.resp_stats_list: t = (resp_stats.elapsed_time, resp_stats.trans_time) trans_timer_points.append(t) trans_timer_vals.append(resp_stats.trans_time) graph.resp_graph_raw(trans_timer_points, 'All_Transactions_response_times.png', results_dir) report.write_line('<h3>Transaction Response Summary (secs)</h3>') report.write_line('<table>') report.write_line('<tr><th>count</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>') report.write_line('<tr><td>%i</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % ( results.total_transactions, min(trans_timer_vals), average(trans_timer_vals), percentile(trans_timer_vals, 80), percentile(trans_timer_vals, 90), percentile(trans_timer_vals, 95), max(trans_timer_vals), standard_dev(trans_timer_vals), )) report.write_line('</table>') # all transactions - interval details avg_resptime_points = {} # {intervalnumber: avg_resptime} percentile_80_resptime_points = {} # {intervalnumber: 80pct_resptime} percentile_90_resptime_points = {} # {intervalnumber: 90pct_resptime} interval_secs = ts_interval splat_series = split_series(trans_timer_points, interval_secs) report.write_line('<h3>Interval Details (secs)</h3>') report.write_line('<table>') report.write_line('<tr><th>interval</th><th>count</th><th>rate</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>') for i, bucket in enumerate(splat_series): interval_start = int((i + 1) * interval_secs) cnt = len(bucket) if cnt == 0: report.write_line('<tr><td>%i</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></tr>' % (i + 1)) else: rate = cnt / float(interval_secs) mn = min(bucket) avg = average(bucket) pct_80 = percentile(bucket, 80) pct_90 = percentile(bucket, 90) pct_95 = percentile(bucket, 95) mx = max(bucket) stdev = standard_dev(bucket) report.write_line('<tr><td>%i</td><td>%i</td><td>%.2f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (i + 1, cnt, rate, mn, avg, pct_80, pct_90, pct_95, mx, stdev)) avg_resptime_points[interval_start] = avg percentile_80_resptime_points[interval_start] = pct_80 percentile_90_resptime_points[interval_start] = pct_90 report.write_line('</table>') graph.resp_graph(avg_resptime_points, percentile_80_resptime_points, percentile_90_resptime_points, 'All_Transactions_response_times_intervals.png', results_dir) report.write_line('<h3>Graphs</h3>') report.write_line('<h4>Response Time: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="All_Transactions_response_times_intervals.png"></img>') report.write_line('<h4>Response Time: raw data (all points)</h4>') report.write_line('<img src="All_Transactions_response_times.png"></img>') report.write_line('<h4>Throughput: 5 sec time-series</h4>') report.write_line('<img src="All_Transactions_throughput.png"></img>') # all transactions - throughput throughput_points = {} # {intervalnumber: numberofrequests} interval_secs = ts_interval splat_series = split_series(trans_timer_points, interval_secs) for i, bucket in enumerate(splat_series): throughput_points[int((i + 1) * interval_secs)] = (len(bucket) / interval_secs) graph.tp_graph(throughput_points, 'All_Transactions_throughput.png', results_dir) # custom timers for timer_name in sorted(results.uniq_timer_names): custom_timer_vals = [] custom_timer_points = [] for resp_stats in results.resp_stats_list: try: val = resp_stats.custom_timers[timer_name] custom_timer_points.append((resp_stats.elapsed_time, val)) custom_timer_vals.append(val) except KeyError: pass graph.resp_graph_raw(custom_timer_points, timer_name + '_response_times.png', results_dir) throughput_points = {} # {intervalnumber: numberofrequests} interval_secs = ts_interval splat_series = split_series(custom_timer_points, interval_secs) for i, bucket in enumerate(splat_series): throughput_points[int((i + 1) * interval_secs)] = (len(bucket) / interval_secs) graph.tp_graph(throughput_points, timer_name + '_throughput.png', results_dir) report.write_line('<hr />') report.write_line('<h2>Custom Timer: %s</h2>' % timer_name) report.write_line('<h3>Timer Summary (secs)</h3>') report.write_line('<table>') report.write_line('<tr><th>count</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>') report.write_line('<tr><td>%i</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % ( len(custom_timer_vals), min(custom_timer_vals), average(custom_timer_vals), percentile(custom_timer_vals, 80), percentile(custom_timer_vals, 90), percentile(custom_timer_vals, 95), max(custom_timer_vals), standard_dev(custom_timer_vals) )) report.write_line('</table>') # custom timers - interval details avg_resptime_points = {} # {intervalnumber: avg_resptime} percentile_80_resptime_points = {} # {intervalnumber: 80pct_resptime} percentile_90_resptime_points = {} # {intervalnumber: 90pct_resptime} interval_secs = ts_interval splat_series = split_series(custom_timer_points, interval_secs) report.write_line('<h3>Interval Details (secs)</h3>') report.write_line('<table>') report.write_line('<tr><th>interval</th><th>count</th><th>rate</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>') for i, bucket in enumerate(splat_series): interval_start = int((i + 1) * interval_secs) cnt = len(bucket) if cnt == 0: report.write_line('<tr><td>%i</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></tr>' % (i + 1)) else: rate = cnt / float(interval_secs) mn = min(bucket) avg = average(bucket) pct_80 = percentile(bucket, 80) pct_90 = percentile(bucket, 90) pct_95 = percentile(bucket, 95) mx = max(bucket) stdev = standard_dev(bucket) report.write_line('<tr><td>%i</td><td>%i</td><td>%.2f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (i + 1, cnt, rate, mn, avg, pct_80, pct_90, pct_95, mx, stdev)) avg_resptime_points[interval_start] = avg percentile_80_resptime_points[interval_start] = pct_80 percentile_90_resptime_points[interval_start] = pct_90 report.write_line('</table>') graph.resp_graph(avg_resptime_points, percentile_80_resptime_points, percentile_90_resptime_points, timer_name + '_response_times_intervals.png', results_dir) report.write_line('<h3>Graphs</h3>') report.write_line('<h4>Response Time: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="%s_response_times_intervals.png"></img>' % timer_name) report.write_line('<h4>Response Time: raw data (all points)</h4>') report.write_line('<img src="%s_response_times.png"></img>' % timer_name) report.write_line('<h4>Throughput: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="%s_throughput.png"></img>' % timer_name) ## user group times #for user_group_name in sorted(results.uniq_user_group_names): # ug_timer_vals = [] # for resp_stats in results.resp_stats_list: # if resp_stats.user_group_name == user_group_name: # ug_timer_vals.append(resp_stats.trans_time) # print user_group_name # print 'min: %.3f' % min(ug_timer_vals) # print 'avg: %.3f' % average(ug_timer_vals) # print '80pct: %.3f' % percentile(ug_timer_vals, 80) # print '90pct: %.3f' % percentile(ug_timer_vals, 90) # print '95pct: %.3f' % percentile(ug_timer_vals, 95) # print 'max: %.3f' % max(ug_timer_vals) # print '' report.write_line('<hr />') report.write_closing_html()
def output_results(results_dir, results_file, run_time, rampup, ts_interval, user_group_configs=None, xml_reports=False): results = Results(results_dir + results_file, run_time) report = reportwriter.Report(results_dir) print 'transactions: %i' % results.total_transactions print 'errors: %i' % results.total_errors print '' print 'test start: %s' % results.start_datetime print 'test finish: %s' % results.finish_datetime print '' # write the results in XML if xml_reports: reportwriterxml.write_jmeter_output(results.resp_stats_list, results_dir) report.write_line('<h1>Performance Results Report</h1>') report.write_line('<h2>Summary</h2>') report.write_line('<div class="summary">') report.write_line('<b>transactions:</b> %d<br />' % results.total_transactions) report.write_line('<b>errors:</b> %d<br />' % results.total_errors) report.write_line('<b>run time:</b> %d secs<br />' % run_time) report.write_line('<b>rampup:</b> %d secs<br /><br />' % rampup) report.write_line('<b>test start:</b> %s<br />' % results.start_datetime) report.write_line('<b>test finish:</b> %s<br /><br />' % results.finish_datetime) report.write_line( '<b>time-series interval:</b> %s secs<br /><br /><br />' % ts_interval) if user_group_configs: report.write_line('<b>workload configuration:</b><br /><br />') report.write_line('<table>') report.write_line( '<tr><th>group name</th><th>processes</th><th>threads</th><th>script name</th></tr>' ) for user_group_config in user_group_configs: report.write_line( '<tr><td>%s</td><td>%d</td><td>%d</td><td>%s</td></tr>' % (user_group_config.name, user_group_config.num_processes, user_group_config.num_threads, user_group_config.script_file)) report.write_line('</table>') report.write_line('</div>') report.write_line('<h2>All Transactions</h2>') # all transactions - response times trans_timer_points = [] # [elapsed, timervalue] trans_timer_vals = [] for resp_stats in results.resp_stats_list: t = (resp_stats.elapsed_time, resp_stats.trans_time) trans_timer_points.append(t) trans_timer_vals.append(resp_stats.trans_time) graph.resp_graph_raw(trans_timer_points, 'All_Transactions_response_times.png', results_dir) def create_summery_data(total_transactions, vals): """ create the data for the summery tables/jsons """ return { 'count': results.total_transactions, 'min': min(vals), 'avg': average(vals), '80pct': percentile(vals, 80), '90pct': percentile(vals, 90), '95pct': percentile(vals, 95), 'max': max(vals), 'stdev': standard_dev(vals), } data = create_summery_data(results.total_transactions, trans_timer_vals) report.append_summery_data("ALL", data) report.write_line('<h3>Transaction Response Summary (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>count</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) report.write_line( '<tr><td>%(count)i</td><td>%(min).3f</td><td>%(avg).3f</td><td>%(80pct).3f</td><td>%(90pct).3f</td><td>%(95pct).3f</td><td>%(max).3f</td><td>%(stdev).3f</td></tr>' % data) report.write_line('</table>') # all transactions - interval details avg_resptime_points = {} # {intervalnumber: avg_resptime} percentile_80_resptime_points = {} # {intervalnumber: 80pct_resptime} percentile_90_resptime_points = {} # {intervalnumber: 90pct_resptime} interval_secs = ts_interval splat_series = split_series(trans_timer_points, interval_secs) report.write_line('<h3>Interval Details (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>interval</th><th>count</th><th>rate</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) for i, bucket in enumerate(splat_series): interval_start = int((i + 1) * interval_secs) cnt = len(bucket) if cnt == 0: report.write_line( '<tr><td>%i</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></tr>' % (i + 1)) else: rate = cnt / float(interval_secs) mn = min(bucket) avg = average(bucket) pct_80 = percentile(bucket, 80) pct_90 = percentile(bucket, 90) pct_95 = percentile(bucket, 95) mx = max(bucket) stdev = standard_dev(bucket) report.write_line( '<tr><td>%i</td><td>%i</td><td>%.2f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (i + 1, cnt, rate, mn, avg, pct_80, pct_90, pct_95, mx, stdev)) avg_resptime_points[interval_start] = avg percentile_80_resptime_points[interval_start] = pct_80 percentile_90_resptime_points[interval_start] = pct_90 report.write_line('</table>') graph.resp_graph(avg_resptime_points, percentile_80_resptime_points, percentile_90_resptime_points, 'All_Transactions_response_times_intervals.png', results_dir) report.write_line('<h3>Graphs</h3>') report.write_line('<h4>Response Time: %s sec time-series</h4>' % ts_interval) report.write_line( '<img src="All_Transactions_response_times_intervals.png"></img>') report.write_line('<h4>Response Time: raw data (all points)</h4>') report.write_line('<img src="All_Transactions_response_times.png"></img>') report.write_line('<h4>Throughput: 5 sec time-series</h4>') report.write_line('<img src="All_Transactions_throughput.png"></img>') # all transactions - throughput throughput_points = {} # {intervalnumber: numberofrequests} interval_secs = ts_interval splat_series = split_series(trans_timer_points, interval_secs) for i, bucket in enumerate(splat_series): throughput_points[int( (i + 1) * interval_secs)] = (len(bucket) / interval_secs) graph.tp_graph(throughput_points, 'All_Transactions_throughput.png', results_dir) # custom timers for timer_name in sorted(results.uniq_timer_names): custom_timer_vals = [] custom_timer_points = [] for resp_stats in results.resp_stats_list: try: val = resp_stats.custom_timers[timer_name] custom_timer_points.append((resp_stats.elapsed_time, val)) custom_timer_vals.append(val) except KeyError: pass graph.resp_graph_raw(custom_timer_points, timer_name + '_response_times.png', results_dir) throughput_points = {} # {intervalnumber: numberofrequests} interval_secs = ts_interval splat_series = split_series(custom_timer_points, interval_secs) for i, bucket in enumerate(splat_series): throughput_points[int( (i + 1) * interval_secs)] = (len(bucket) / interval_secs) graph.tp_graph(throughput_points, timer_name + '_throughput.png', results_dir) report.write_line('<hr />') report.write_line('<h2>Custom Timer: %s</h2>' % timer_name) report.write_line('<h3>Timer Summary (secs)</h3>') data = create_summery_data(len(custom_timer_vals), custom_timer_vals) report.append_summery_data(timer_name, data) report.write_line('<table>') report.write_line( '<tr><th>count</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) report.write_line( '<tr><td>%(count)i</td><td>%(min).3f</td><td>%(avg).3f</td><td>%(80pct).3f</td><td>%(90pct).3f</td><td>%(95pct).3f</td><td>%(max).3f</td><td>%(stdev).3f</td></tr>' % data) report.write_line('</table>') # custom timers - interval details avg_resptime_points = {} # {intervalnumber: avg_resptime} percentile_80_resptime_points = {} # {intervalnumber: 80pct_resptime} percentile_90_resptime_points = {} # {intervalnumber: 90pct_resptime} interval_secs = ts_interval splat_series = split_series(custom_timer_points, interval_secs) report.write_line('<h3>Interval Details (secs)</h3>') report.write_line('<table>') report.write_line( '<tr><th>interval</th><th>count</th><th>rate</th><th>min</th><th>avg</th><th>80pct</th><th>90pct</th><th>95pct</th><th>max</th><th>stdev</th></tr>' ) for i, bucket in enumerate(splat_series): interval_start = int((i + 1) * interval_secs) cnt = len(bucket) if cnt == 0: report.write_line( '<tr><td>%i</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td><td>N/A</td></tr>' % (i + 1)) else: rate = cnt / float(interval_secs) mn = min(bucket) avg = average(bucket) pct_80 = percentile(bucket, 80) pct_90 = percentile(bucket, 90) pct_95 = percentile(bucket, 95) mx = max(bucket) stdev = standard_dev(bucket) report.write_line( '<tr><td>%i</td><td>%i</td><td>%.2f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td><td>%.3f</td></tr>' % (i + 1, cnt, rate, mn, avg, pct_80, pct_90, pct_95, mx, stdev)) avg_resptime_points[interval_start] = avg percentile_80_resptime_points[interval_start] = pct_80 percentile_90_resptime_points[interval_start] = pct_90 report.write_line('</table>') graph.resp_graph(avg_resptime_points, percentile_80_resptime_points, percentile_90_resptime_points, timer_name + '_response_times_intervals.png', results_dir) report.write_line('<h3>Graphs</h3>') report.write_line('<h4>Response Time: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="%s_response_times_intervals.png"></img>' % timer_name) report.write_line('<h4>Response Time: raw data (all points)</h4>') report.write_line('<img src="%s_response_times.png"></img>' % timer_name) report.write_line('<h4>Throughput: %s sec time-series</h4>' % ts_interval) report.write_line('<img src="%s_throughput.png"></img>' % timer_name) ## user group times #for user_group_name in sorted(results.uniq_user_group_names): # ug_timer_vals = [] # for resp_stats in results.resp_stats_list: # if resp_stats.user_group_name == user_group_name: # ug_timer_vals.append(resp_stats.trans_time) # print user_group_name # print 'min: %.3f' % min(ug_timer_vals) # print 'avg: %.3f' % average(ug_timer_vals) # print '80pct: %.3f' % percentile(ug_timer_vals, 80) # print '90pct: %.3f' % percentile(ug_timer_vals, 90) # print '95pct: %.3f' % percentile(ug_timer_vals, 95) # print 'max: %.3f' % max(ug_timer_vals) # print '' report.write_line('<hr />') report.write_closing_html() report.create_summery_json()