示例#1
0
def test_d2_q2_mapping_hubbard():
    n_density, rdm_generator = system_hubbard()
    density = AntiSymmOrbitalDensity(n_density, 8)
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()
    tqdm_aa, tqdm_bb, tqdm_ab, _ = density.construct_thdm()
    opdm_a, opdm_b = density.construct_opdm()
    bas_aa, bas_ab = geminal_spin_basis(4)

    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    tpdm_aa = Tensor(tpdm_aa, name='cckk_aa', basis=bas_aa)
    tpdm_bb = Tensor(tpdm_bb, name='cckk_bb', basis=bas_aa)
    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bas_ab)
    tqdm_aa = Tensor(tqdm_aa, name='kkcc_aa', basis=bas_aa)
    tqdm_bb = Tensor(tqdm_bb, name='kkcc_bb', basis=bas_aa)
    tqdm_ab = Tensor(tqdm_ab, name='kkcc_ab', basis=bas_ab)

    rdms = MultiTensor(
        [opdm_a, opdm_b, tpdm_aa, tpdm_bb, tpdm_ab, tqdm_aa, tqdm_bb, tqdm_ab])
    dual_basis = d2_q2_mapping(4)
    rdms.dual_basis = dual_basis
    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))
示例#2
0
def test_d2_spin_sz_rep():
    n_density, rdm_generator, transform, molecule = system()
    assert np.isclose(molecule.fci_energy, -2.84383506834)

    density = AntiSymmOrbitalDensity(n_density, molecule.n_qubits)
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()
    opdm_a, opdm_b = density.construct_opdm()
    bas_aa, bas_ab = geminal_spin_basis(molecule.n_orbitals)

    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bas_ab)
    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    rdms = MultiTensor([opdm_a, opdm_b, tpdm_ab])

    dim = int(np.sqrt(tpdm_ab.data.shape[0]))
    sz_rep_value = 0
    for i in range(dim):
        sz_rep_value += 0.5 * (opdm_a.data[i, i] - opdm_b.data[i, i])

    N = molecule.n_electrons
    M = 0
    S = 0
    db = DualBasis()
    db += s_representability_d2ab(dim, N, M, S)
    db += sz_representability(dim, M)
    rdms.dual_basis = db
    xvec = rdms.vectorize_tensors()
    A, _, b = rdms.synthesize_dual_basis()
    assert np.allclose(A.dot(xvec) - b, 0.0)
示例#3
0
def test_d2_d1_mapping_hubbard():
    n_density, rdm_generator = system_hubbard()

    density = AntiSymmOrbitalDensity(n_density, 8)
    tpdm_aa, tpdm_bb, tpdm_ab, [bas_aa, bas_ab] = density.construct_tpdm()
    opdm_a, opdm_b = density.construct_opdm()

    from itertools import product
    test_opdm = np.zeros_like(opdm_a)
    for i, j in product(range(opdm_a.shape[0]), repeat=2):
        if i <= j:
            for r in range(opdm_a.shape[0]):
                if i != r and j != r:
                    top_gem = tuple(sorted([i, r]))
                    bot_gem = tuple(sorted([j, r]))
                    parity = (-1)**(r < i) * (-1)**(r < j)
                    if i == j:
                        test_opdm[i, j] += tpdm_aa[bas_aa[top_gem],
                                                   bas_aa[bot_gem]] * parity
                    else:
                        test_opdm[j,
                                  i] += tpdm_aa[bas_aa[top_gem],
                                                bas_aa[bot_gem]] * parity * 0.5
                        test_opdm[j,
                                  i] += tpdm_aa[bas_aa[bot_gem],
                                                bas_aa[top_gem]] * parity * 0.5
                        test_opdm[i,
                                  j] += tpdm_aa[bas_aa[top_gem],
                                                bas_aa[bot_gem]] * parity * 0.5
                        test_opdm[i,
                                  j] += tpdm_aa[bas_aa[bot_gem],
                                                bas_aa[top_gem]] * parity * 0.5

    assert np.allclose(test_opdm, opdm_a)

    bas_aa, bas_ab = geminal_spin_basis(4)
    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    tpdm_aa = Tensor(tpdm_aa, name='cckk_aa', basis=bas_aa)
    tpdm_bb = Tensor(tpdm_bb, name='cckk_bb', basis=bas_aa)
    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bas_ab)
    rdms = MultiTensor([opdm_a, opdm_b, tpdm_aa, tpdm_bb, tpdm_ab])

    # d2ab_d1a test
    Na = Nb = 2
    dual_basis = d2ab_d1a_mapping(4, Nb)
    dual_basis += d2ab_d1b_mapping(4, Na)
    dual_basis += d2aa_d1a_mapping(4, Na)
    dual_basis += d2bb_d1b_mapping(4, Nb)
    rdms.dual_basis = dual_basis
    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    w, v = np.linalg.eigh(np.dot(Amat, Amat.T))
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))
示例#4
0
def test_d1_q1_mapping():
    n_density, rdm_generator, transform, molecule = system_h4()

    density = AntiSymmOrbitalDensity(n_density, molecule.n_qubits)
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()
    opdm_a, opdm_b = density.construct_opdm()
    oqdm_a, oqdm_b = density.construct_ohdm()

    bas_aa, bas_ab = geminal_spin_basis(molecule.n_orbitals)

    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    oqdm_a = Tensor(oqdm_a, name='kc_a')
    oqdm_b = Tensor(oqdm_b, name='kc_b')
    rdms = MultiTensor([opdm_a, opdm_b, oqdm_a, oqdm_b])

    dual_basis = d1a_q1a_mapping(molecule.n_orbitals)
    rdms.dual_basis = dual_basis
    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))

    dual_basis = d1b_q1b_mapping(molecule.n_orbitals)
    rdms.dual_basis = dual_basis
    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))

    dual_basis_a = d1b_q1b_mapping(molecule.n_orbitals)
    dual_basis_b = d1a_q1a_mapping(molecule.n_orbitals)
    rdms.dual_basis = dual_basis_a + dual_basis_b
    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))
def test_d2_g2_mapping():
    n_density, rdm_generator, transform, molecule = system_h4()

    density = AntiSymmOrbitalDensity(n_density, molecule.n_qubits)
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()
    tqdm_aa, tqdm_bb, tqdm_ab, _ = density.construct_thdm()
    phdm_ab, phdm_ba, phdm_aabb = density.construct_phdm()
    opdm_a, opdm_b = density.construct_opdm()
    bas_aa, bas_ab = geminal_spin_basis(molecule.n_orbitals)

    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    tpdm_aa = Tensor(tpdm_aa, name='cckk_aa', basis=bas_aa)
    tpdm_bb = Tensor(tpdm_bb, name='cckk_bb', basis=bas_aa)
    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bas_ab)
    tqdm_aa = Tensor(tqdm_aa, name='kkcc_aa', basis=bas_aa)
    tqdm_bb = Tensor(tqdm_bb, name='kkcc_bb', basis=bas_aa)
    tqdm_ab = Tensor(tqdm_ab, name='kkcc_ab', basis=bas_ab)
    phdm_ab = Tensor(phdm_ab, name='ckck_ab')
    phdm_ba = Tensor(phdm_ba, name='ckck_ba')
    phdm_aabb = Tensor(
        phdm_aabb, name='ckck_aabb'
    )  # What basis do we want to use for super blocks like this?

    rdms = MultiTensor([
        opdm_a, opdm_b, tpdm_aa, tpdm_bb, tpdm_ab, tqdm_aa, tqdm_bb, tqdm_ab,
        phdm_ab, phdm_ba, phdm_aabb
    ])
    dual_basis = d2_g2_mapping(molecule.n_orbitals)
    rdms.dual_basis = dual_basis

    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))
示例#6
0
def test_d2_g2_mapping():
    n_density, rdm_generator, transform, molecule = system_h4()
    # n_density, rdm_generator = system_hubbard()
    # n_density, rdm_generator, transform, molecule = system()
    dim = 4
    density = AntiSymmOrbitalDensity(n_density, 2 * dim)
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()
    tqdm_aa, tqdm_bb, tqdm_ab, _ = density.construct_thdm()
    phdm_ab, phdm_ba, phdm_aabb = density.construct_phdm()
    # for i, j, k, l in product(range(dim), repeat=4):
    #     fop = ((2 * i, 1), (2 * j + 1, 0), (2 * l + 1, 1), (2 * k, 0))
    #     fop = of.FermionOperator(fop)
    #     opmat = of.get_sparse_operator(fop, n_qubits=2 * dim)
    #     rdm_val = (np.trace(n_density @ opmat))
    #     # print(rdm_val, phdm_ab[i * dim + j, k * dim + l])
    #     assert np.isclose(rdm_val, phdm_ab[i * dim + j, k * dim + l])

    # for i, j, k, l in product(range(dim), repeat=4):
    #     fop = ((2 * i + 1, 1), (2 * j, 0), (2 * l, 1), (2 * k + 1, 0))
    #     fop = of.FermionOperator(fop)
    #     opmat = of.get_sparse_operator(fop, n_qubits=2 * dim)
    #     rdm_val = (np.trace(n_density @ opmat))
    #     assert np.isclose(rdm_val, phdm_ba[i * dim + j, k * dim + l])

    # for i, j, k, l in product(range(dim), repeat=4):
    #     fop = ((2 * i, 1), (2 * j, 0), (2 * k, 1), (2 * l, 0))
    #     fop = of.FermionOperator(fop)
    #     opmat = of.get_sparse_operator(of.jordan_wigner(fop), n_qubits=2 * dim)
    #     rdm_val = (np.trace(n_density @ opmat))
    #     assert np.isclose(rdm_val, phdm_aabb[i * dim + j, l * dim + k])

    # for i, j, k, l in product(range(dim), repeat=4):
    #     fop = ((2 * i + 1, 1), (2 * j + 1, 0), (2 * k + 1, 1), (2 * l + 1, 0))
    #     fop = of.FermionOperator(fop)
    #     opmat = of.get_sparse_operator(of.jordan_wigner(fop), n_qubits=2 * dim)
    #     rdm_val = (np.trace(n_density @ opmat))
    #     # print((i, j, k, l), rdm_val, phdm_aabb[i * dim + j + dim**2, l * dim + k + dim**2])
    #     assert np.isclose(rdm_val, phdm_aabb[i * dim + j + dim**2, l * dim + k + dim**2])

    # for i, j, k, l in product(range(dim), repeat=4):
    #     fop = ((2 * i, 1), (2 * j, 0), (2 * k + 1, 1), (2 * l + 1, 0))
    #     fop = of.FermionOperator(fop)
    #     opmat = of.get_sparse_operator(of.jordan_wigner(fop), n_qubits=2 * dim)
    #     rdm_val = (np.trace(n_density @ opmat))
    #     assert np.isclose(rdm_val, phdm_aabb[i * dim + j, l * dim + k + dim**2])

    # for i, j, k, l in product(range(dim), repeat=4):
    #     fop = ((2 * i + 1, 1), (2 * j + 1, 0), (2 * l, 1), (2 * k, 0))
    #     fop = of.FermionOperator(fop)
    #     opmat = of.get_sparse_operator(of.jordan_wigner(fop), n_qubits=2 * dim)
    #     rdm_val = (np.trace(n_density @ opmat))
    #     # print((i, j, k, l), rdm_val, phdm_aabb[i * dim + j + dim**2, k * dim + l])
    #     assert np.isclose(rdm_val, phdm_aabb[i * dim + j + dim**2, k * dim + l])

    # for i, j, k, l in product(range(dim), repeat=4):
    #     assert np.isclose(phdm_aabb[i * dim + j + dim**2, k * dim + l],
    #                       phdm_aabb[k * dim + l, i * dim + j + dim**2]
    #                       )

    assert of.is_hermitian(phdm_ab)
    assert of.is_hermitian(phdm_ba)
    assert of.is_hermitian(phdm_aabb)
    w, v = np.linalg.eigh(phdm_ab)
    assert np.all(w > -1.0E-14)
    w, v = np.linalg.eigh(phdm_ba)
    assert np.all(w > -1.0E-14)
    w, v = np.linalg.eigh(phdm_aabb)
    assert np.all(w > -1.0E-14)

    opdm_a, opdm_b = density.construct_opdm()
    bas_aa, bas_ab = geminal_spin_basis(dim)

    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    tpdm_aa = Tensor(tpdm_aa, name='cckk_aa', basis=bas_aa)
    tpdm_bb = Tensor(tpdm_bb, name='cckk_bb', basis=bas_aa)
    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bas_ab)
    tqdm_aa = Tensor(tqdm_aa, name='kkcc_aa', basis=bas_aa)
    tqdm_bb = Tensor(tqdm_bb, name='kkcc_bb', basis=bas_aa)
    tqdm_ab = Tensor(tqdm_ab, name='kkcc_ab', basis=bas_ab)
    phdm_ab = Tensor(phdm_ab, name='ckck_ab', basis=bas_ab)
    phdm_ba = Tensor(phdm_ba, name='ckck_ba', basis=bas_ab)
    phdm_aabb = Tensor(
        phdm_aabb, name='ckck_aabb'
    )  # What basis do we want to use for super blocks like this?

    rdms = MultiTensor([
        opdm_a, opdm_b, tpdm_aa, tpdm_bb, tpdm_ab, tqdm_aa, tqdm_bb, tqdm_ab,
        phdm_ab, phdm_ba, phdm_aabb
    ])
    dual_basis = d2_g2_mapping(dim)
    rdms.dual_basis = dual_basis

    A, _, c = rdms.synthesize_dual_basis()
    Amat = A.todense()
    cmat = c.todense()

    primal_vec = rdms.vectorize_tensors()
    residual = Amat.dot(primal_vec) - cmat
    assert np.allclose(residual, np.zeros_like(residual))
示例#7
0
def dqg_run_bpsdp():
    import sys
    from openfermion.hamiltonians import MolecularData
    from openfermionpsi4 import run_psi4
    from openfermionpyscf import run_pyscf
    from openfermion.utils import map_one_pdm_to_one_hole_dm, \
        map_two_pdm_to_two_hole_dm, map_two_pdm_to_particle_hole_dm

    print('Running System Setup')
    basis = 'sto-6g'
    # basis = '6-31g'
    multiplicity = 1
    # charge = 0
    # geometry = [('H', [0.0, 0.0, 0.0]), ('H', [0, 0, 0.75])]
    # charge = 1
    # geometry = [('H', [0.0, 0.0, 0.0]), ('He', [0, 0, 0.75])]
    charge = 0
    bd = 1.2
    # geometry = [('H', [0.0, 0.0, 0.0]), ('H', [0, 0, bd]),
    #             ('H', [0.0, 0.0, 2 * bd]), ('H', [0, 0, 3 * bd])]
    # geometry = [['H', [0, 0, 0]], ['H', [1.2, 0, 0]],
    #             ['H', [0, 1.2, 0]], ['H', [1.2, 1.2, 0]]]
    # geometry = [['He', [0, 0, 0]], ['H', [0, 0, 1.2]]]
    #  geometry = [['Be' [0, 0, 0]], [['B', [1.2, 0, 0]]]]
    geometry = [['N', [0, 0, 0]], ['N', [0, 0, 1.1]]]
    molecule = MolecularData(geometry, basis, multiplicity, charge)
    # Run Psi4.
    # molecule = run_psi4(molecule,
    #                     run_scf=True,
    #                     run_mp2=False,
    #                     run_cisd=False,
    #                     run_ccsd=False,
    #                     run_fci=True,
    #                     delete_input=True)
    molecule = run_pyscf(molecule,
                         run_scf=True,
                         run_mp2=False,
                         run_cisd=False,
                         run_ccsd=False,
                         run_fci=True)

    print('nuclear_repulsion', molecule.nuclear_repulsion)
    print('gs energy ', molecule.fci_energy)
    print("hf energy ", molecule.hf_energy)

    nuclear_repulsion = molecule.nuclear_repulsion
    gs_energy = molecule.fci_energy

    import openfermion as of
    hamiltonian = molecule.get_molecular_hamiltonian(
        occupied_indices=[0], active_indices=[1, 2, 3, 4])
    print(type(hamiltonian))
    print(hamiltonian)
    nuclear_repulsion = hamiltonian.constant
    hamiltonian.constant = 0
    ham = of.get_sparse_operator(hamiltonian).toarray()
    w, v = np.linalg.eigh(ham)
    idx = 0
    gs_energy = w[idx]
    n_density = v[:, [idx]] @ v[:, [idx]].conj().T

    from representability.fermions.density.antisymm_sz_density import AntiSymmOrbitalDensity

    density = AntiSymmOrbitalDensity(n_density, 8)
    opdm_a, opdm_b = density.construct_opdm()
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()

    true_tpdm = density.get_tpdm(density.rho, density.dim)
    true_tpdm = true_tpdm.transpose(0, 1, 3, 2)
    test_tpdm = unspin_adapt(tpdm_aa, tpdm_bb, tpdm_ab)
    assert np.allclose(true_tpdm, test_tpdm)

    tqdm_aa, tqdm_bb, tqdm_ab, _ = density.construct_thdm()
    phdm_ab, phdm_ba, phdm_aabb = density.construct_phdm()
    Na = np.round(opdm_a.trace()).real
    Nb = np.round(opdm_b.trace()).real

    one_body_ints, two_body_ints = hamiltonian.one_body_tensor, hamiltonian.two_body_tensor
    two_body_ints = np.einsum('ijkl->ijlk', two_body_ints)

    n_electrons = Na + Nb
    print('n_electrons', n_electrons)
    dim = one_body_ints.shape[0]
    spatial_basis_rank = dim // 2
    bij_bas_aa, bij_bas_ab = geminal_spin_basis(spatial_basis_rank)

    opdm_a_interaction, opdm_b_interaction, v2aa, v2bb, v2ab = \
        spin_adapted_interaction_tensor_rdm_consistent(two_body_ints,
                                                       one_body_ints)

    dual_basis = sz_adapted_linear_constraints(
        spatial_basis_rank,
        Na,
        Nb, ['ck', 'kc', 'cckk', 'ckck', 'kkcc'],
        S=1,
        M=-1)
    print("constructed dual basis")

    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    oqdm_a = Tensor(np.eye(dim // 2) - opdm_a.data, name='kc_a')
    oqdm_b = Tensor(np.eye(dim // 2) - opdm_b.data, name='kc_b')

    tpdm_aa = Tensor(tpdm_aa, name='cckk_aa', basis=bij_bas_aa)
    tpdm_bb = Tensor(tpdm_bb, name='cckk_bb', basis=bij_bas_aa)
    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bij_bas_ab)

    tqdm_aa = Tensor(tqdm_aa, name='kkcc_aa', basis=bij_bas_aa)
    tqdm_bb = Tensor(tqdm_bb, name='kkcc_bb', basis=bij_bas_aa)
    tqdm_ab = Tensor(tqdm_ab, name='kkcc_ab', basis=bij_bas_ab)

    phdm_ab = Tensor(phdm_ab, name='ckck_ab', basis=bij_bas_ab)
    phdm_ba = Tensor(phdm_ba, name='ckck_ba', basis=bij_bas_ab)
    phdm_aabb = Tensor(phdm_aabb, name='ckck_aabb')

    dtensor = MultiTensor([
        opdm_a, opdm_b, oqdm_a, oqdm_b, tpdm_aa, tpdm_bb, tpdm_ab, tqdm_aa,
        tqdm_bb, tqdm_ab, phdm_ab, phdm_ba, phdm_aabb
    ])

    copdm_a = opdm_a_interaction
    copdm_b = opdm_b_interaction
    coqdm_a = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='kc_a')
    coqdm_b = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='kc_b')
    ctpdm_aa = v2aa
    ctpdm_bb = v2bb
    ctpdm_ab = v2ab
    ctqdm_aa = Tensor(np.zeros_like(v2aa.data),
                      name='kkcc_aa',
                      basis=bij_bas_aa)
    ctqdm_bb = Tensor(np.zeros_like(v2bb.data),
                      name='kkcc_bb',
                      basis=bij_bas_aa)
    ctqdm_ab = Tensor(np.zeros_like(v2ab.data),
                      name='kkcc_ab',
                      basis=bij_bas_ab)
    cphdm_ab = Tensor(np.zeros((spatial_basis_rank**2, spatial_basis_rank**2)),
                      name='ckck_ab',
                      basis=bij_bas_ab)
    cphdm_ba = Tensor(np.zeros((spatial_basis_rank**2, spatial_basis_rank**2)),
                      name='ckck_ba',
                      basis=bij_bas_ab)
    cphdm_aabb = Tensor(np.zeros(
        (2 * spatial_basis_rank**2, 2 * spatial_basis_rank**2)),
                        name='ckck_aabb')

    ctensor = MultiTensor([
        copdm_a, copdm_b, coqdm_a, coqdm_b, ctpdm_aa, ctpdm_bb, ctpdm_ab,
        ctqdm_aa, ctqdm_bb, ctqdm_ab, cphdm_ab, cphdm_ba, cphdm_aabb
    ])

    print(
        (ctensor.vectorize_tensors().T @ dtensor.vectorize_tensors())[0,
                                                                      0].real)
    print(gs_energy)

    ctensor.dual_basis = dual_basis
    A, _, b = ctensor.synthesize_dual_basis()
    print("size of dual basis", len(dual_basis.elements))

    print(A @ dtensor.vectorize_tensors() - b)

    nc, nv = A.shape
    A.eliminate_zeros()
    nnz = A.nnz

    from sdpsolve.sdp import SDP
    from sdpsolve.solvers.bpsdp import solve_bpsdp
    from sdpsolve.solvers.bpsdp.bpsdp_old import solve_bpsdp
    from sdpsolve.utils.matreshape import vec2block
    sdp = SDP()

    sdp.nc = nc
    sdp.nv = nv
    sdp.nnz = nnz
    sdp.blockstruct = list(map(lambda x: int(np.sqrt(x.size)),
                               ctensor.tensors))
    sdp.nb = len(sdp.blockstruct)
    sdp.Amat = A.real
    sdp.bvec = b.todense().real
    sdp.cvec = ctensor.vectorize_tensors().real

    sdp.Initialize()
    epsilon = 1.0E-7
    sdp.epsilon = float(epsilon)
    sdp.epsilon_inner = float(epsilon) / 100

    sdp.disp = True
    sdp.iter_max = 70000
    sdp.inner_solve = 'CG'
    sdp.inner_iter_max = 2

    # # sdp_data = solve_bpsdp(sdp)
    solve_bpsdp(sdp)
    # # create all the psd-matrices for the
    # variable_dictionary = {}
    # for tensor in ctensor.tensors:
    #     linear_dim = int(np.sqrt(tensor.size))
    #     variable_dictionary[tensor.name] = cvx.Variable(shape=(linear_dim, linear_dim), PSD=True, name=tensor.name)

    # print("constructing constraints")
    # constraints = []
    # for dbe in dual_basis:
    #     single_constraint = []
    #     for tname, v_elements, p_coeffs in dbe:
    #         active_indices = get_var_indices(ctensor.tensors[tname], v_elements)
    #         single_constraint.append(variable_dictionary[tname][active_indices] * p_coeffs)
    #     constraints.append(cvx.sum(single_constraint) == dbe.dual_scalar)
    # print('constraints constructed')

    # print("constructing the problem")
    # objective = cvx.Minimize(
    #             cvx.trace(copdm_a.data @ variable_dictionary['ck_a']) +
    #             cvx.trace(copdm_b.data @ variable_dictionary['ck_b']) +
    #             cvx.trace(ctpdm_aa.data @ variable_dictionary['cckk_aa']) +
    #             cvx.trace(ctpdm_bb.data @ variable_dictionary['cckk_bb']) +
    #             cvx.trace(ctpdm_ab.data @ variable_dictionary['cckk_ab']))

    # cvx_problem = cvx.Problem(objective, constraints=constraints)
    # print('problem constructed')

    # cvx_problem.solve(solver=cvx.SCS, verbose=True, eps=0.5E-5, max_iters=100000)

    # rdms_solution = vec2block(sdp.blockstruct, sdp.primal)

    print(gs_energy)
    # print(cvx_problem.value + nuclear_repulsion)
    # print(sdp_data.primal_value() + nuclear_repulsion)
    print(sdp.primal.T @ sdp.cvec)

    print(nuclear_repulsion)
    rdms = vec2block(sdp.blockstruct, sdp.primal)

    tpdm = unspin_adapt(rdms[4], rdms[5], rdms[6])
    print(np.einsum('ijij', tpdm))
    tpdm = np.einsum('ijkl->ijlk', tpdm)