np.random.seed(2) BATCH_SIZE = 128 def list_split(l, size): return [l[m:m + size] for m in range(0, len(l), size)] if __name__ == '__main__': images_dir = '/home/hsli/gnode02/imagenet-data/train/' feature_extractor = load_model( 'checkpoints/mobilenetv2_predictor_2W_acc_0.6955_epoch50.hdf5') rm = ResultManager('results') agent_acc_size_dict = [] origin_acc_size_dict = [] agent = Q_Agent(s_dim=2, a_dim=10, epsilon_decay=0.9993, epsilon_min=0.2, lr=0.1, gamma=0.95) step_count = 0 env = BatchImgEnvironment(imagenet_train_path=images_dir, samples_per_class=3, backbone_model=InceptionV3(),
if len(self.agent_memory['reward']) < self.recent_zone: recent_reward = np.mean(self.agent_memory['reward']) recent_acc = np.mean(self.agent_memory['accuracy']) else: recent_reward = np.mean( self.agent_memory['reward'][-self.recent_zone:]) recent_acc = np.mean( self.agent_memory['accuracy'][-self.recent_zone:]) return recent_acc, recent_reward # if __name__ == '__main__': api = Baidu() rm = ResultManager('evaluation_results') running_agent = RunningAgent( dqn_path='evaluation_results/agent_DQN_train_baidu_imagenet.h5', banchmark_q=75, cloud_backend=api, ) imagenet_paths = _gen_sample_set_imagenet( '/home/hsli/gnode02/imagenet-data/train/', 3)[-500:] test_image_paths = imagenet_paths for idx, path in enumerate(test_image_paths): error_code, log_dict = running_agent.agent_upload(path) if error_code > 0: continue
def estimate(self): if len(self.agent_memory['reward']) < self.recent_zone: recent_reward = np.mean(self.agent_memory['reward']) recent_acc = np.mean(self.agent_memory['accuracy']) else: recent_reward = np.mean(self.agent_memory['reward'][-self.recent_zone:]) recent_acc = np.mean(self.agent_memory['accuracy'][-self.recent_zone:]) return recent_acc, recent_reward # if __name__ == '__main__': api = Baidu() # api = FacePP() rm = ResultManager('result') running_agent = RunningAgent(# dqn_path='evaluation_results/agent_DQN_train_baidu_DNIM.h5', # dqn_path='evaluation_results/agent_DQN_train_face_imagenet.h5', # dqn_path='evaluation_results/agent_DQN_train_face_DNIM.h5', # dqn_path='evaluation_results/agent_DQN_retrain_face_DNIM.h5', # dqn_path='evaluation_results/agent_DQN_retrain_baidu_DNIM.h5', dqn_path='result/agent_DQN_train_baidu_imagenet.h5', banchmark_q=75, cloud_backend=api, ) # imagenet_paths = _gen_sample_set_imagenet('/home/hsli/gnode02/imagenet-data/train/', 2) # imagenet_paths = _gen_sample_set_imagenet('/home/imagenet-data/train/', 2) with open("result/imagenet_baidu_ref2000.pkl", "rb") as file: