sim_value = '%s%s_exp_sim.tiff'%(f_path, core_name1) var_flow = '%s%s_exp_var.flo'%(f_path, core_name1) #Obtain the matches' list for both (I0-I1 and I1-I0) print('Obtaining list of matches from DeepMatching') max_scale = math.sqrt(2) #I0-I1 #param = '%s %s -downscale 1 -max_scale %s -rot_range -45 +45 > %s'%(im_name1, im_name2, max_scale, match_name_1) #command_line = '%s %s\n'%(match_comparison, param) #os.system(command_line) #I1-I0 #param = '%s %s -downscale 1 -max_scale %s -rot_range -45 +45 > %s'%(im_name2, im_name1, max_scale, match_name_2) #command_line = '%s %s\n'%(match_comparison, param) #os.system(command_line) #Create a sparse flow from the deepmatching matches. print('Creating sparse from matches') param = '%s %s %s %s\n'%(cut(delete(confi(im_name1, im_name2, match_name_1, f_path), threshold)), width_im, height_im, sparse_name_1) command_line = '%s %s\n'%(sparse_flow, param) os.system(command_line) param = '%s %s %s %s\n'%(cut(delete(confi(im_name2, im_name1, match_name_2, f_path), threshold)), width_im, height_im, sparse_name_2) command_line = '%s %s\n'%(sparse_flow, param) os.system(command_line) #Create a dense flow from a sparse set of initial seeds print('Computing local faldoi') options = '-m %s -wr %s'%(var_m, windows_radio) param = '%s %s %s %s %s %s %s\n'%(im_name1, im_name2, sparse_name_1,sparse_name_2, region_growing, sim_value, options) #print param command_line = '%s %s\n'%(match_propagation, param) os.system(command_line) #Put the dense flow as input for a variational method print('Computing global faldoi')
# os.system(command_line) # Elapsed time (deep matches) matches_timer = time.time() print("Computing matches btw. I0 and I1 ('./deepmatching') took {} secs.". format(matches_timer - load_timer)) else: # Need the timer anyway to compute the rest of relative values! matches_timer = time.time() # Create a sparse flow from the deep matches. if sparse_flow: param_fwd = "{} {} {} {}\n".format( cut(delete(confi(im_name0, im_name1, match_name_1, f_path), threshold)), width_im, height_im, sparse_name_1) command_line_fwd = "{} {}\n".format(sparse_flow, param_fwd) # os.system(command_line) param_bwd = "{} {} {} {}\n".format( cut(delete(confi(im_name1, im_name0, match_name_2, f_path), threshold)), width_im, height_im, sparse_name_2) command_line_bwd = "{} {}\n".format(sparse_flow, param_bwd) # os.system(command_line) # Execute in parallel # Define processes to be run in parallel commands = (command_line_fwd, command_line_bwd) # Create pool of processes to be executed and map them to a thread pool = multiprocessing.Pool(processes=2) pool.map(run_process, commands)
# Elapsed time (deep matches) matches_timer = time.time() print("Computing matches btw. I0 and I1 ('./deepmatching') took {} secs.".format(matches_timer - load_timer)) else: # Need the timer anyway to compute the rest of relative values! matches_timer = time.time() # Create a sparse flow from the deep matches. if sparse_flow_flag: # To compute sparse flow from pre-computed matches: uncomment next 4 lines and comment the 2 below them # matches_fname = "{}_saliency_out_cut.txt".format(match_name_1[:-4]) # matches_bwd_fname = "{}_saliency_out_cut.txt".format(match_name_2[:-4]) # param_fwd = "{} {} {} {}\n".format(matches_fname, width_im, height_im, sparse_name_1) # param_bwd = "{} {} {} {}\n".format(matches_bwd_fname, width_im, height_im, sparse_name_2) param_fwd = "{} {} {} {}\n".format(cut(delete(confi(im_name0, im_name1, match_name_1, f_path), threshold)), width_im, height_im, sparse_name_1) param_bwd = "{} {} {} {}\n".format(cut(delete(confi(im_name1, im_name0, match_name_2, f_path),threshold)), width_im, height_im, sparse_name_2) command_line_fwd = "{} {}\n".format(sparse_flow, param_fwd) command_line_bwd = "{} {}\n".format(sparse_flow, param_bwd) # Execute in parallel # Define processes to be run in parallel commands = (command_line_fwd, command_line_bwd) # Create pool of processes to be executed and map them to a thread pool = multiprocessing.Pool(processes=2) pool.map(run_process, commands) # Elapsed time (sparse flow from matches) sparse_timer = time.time()
#I0-I1 param = '%s %s -downscale 1 -max_scale %s -rot_range -45 +45 > %s'%(im_name0, im_name1, max_scale, match_name_1) command_line = '%s %s\n'%(match_comparison, param) if matchings: os.system(command_line) #I1-I0 param = '%s %s -downscale 1 -max_scale %s -rot_range -45 +45 > %s'%(im_name1, im_name0, max_scale, match_name_2) command_line = '%s %s\n'%(match_comparison, param) if matchings: os.system(command_line) cut(delete(confi(im_name0, im_name1, match_name_1, f_path), threshold)) cut(delete(confi(im_name1, im_name0, match_name_2, f_path), threshold)) #Create a sparse flow from the deepmatching matches. param = '%s %s %s %s\n'%(sparse_in1, width_im, height_im, sparse_name_1) command_line = '%s %s\n'%(sparse_flow, param) if sparse_flow: print('Creating sparse from matches') os.system(command_line) param = '%s %s %s %s\n'%(sparse_in2, width_im, height_im, sparse_name_2) command_line = '%s %s\n'%(sparse_flow, param) if sparse_flow: os.system(command_line)