def testEvalMode(self): # Build config. feature_spec = { "time_feature_1": { "length": 10, "is_time_series": True, }, "time_feature_2": { "length": 10, "is_time_series": True, }, "aux_feature_1": { "length": 1, "is_time_series": False, }, } config = configurations.base() config["inputs"]["features"] = feature_spec config = configdict.ConfigDict(config) config.hparams.output_dim = 1 # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_model.AstroModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # Validate Tensor shapes. self.assertShapeEquals((None, 21), model.pre_logits_concat) self.assertShapeEquals((None, 1), model.logits) self.assertShapeEquals((None, 1), model.predictions) self.assertShapeEquals((None, ), model.batch_losses) self.assertShapeEquals((), model.total_loss) # Execute the TensorFlow graph. scaffold = tf.train.Scaffold() scaffold.finalize() with self.test_session() as sess: sess.run([scaffold.init_op, scaffold.local_init_op]) step = sess.run(model.global_step) self.assertEqual(0, step) # Fetch total loss. features = testing.fake_features(feature_spec, batch_size=16) labels = testing.fake_labels(config.hparams.output_dim, batch_size=16) feed_dict = input_ops.prepare_feed_dict(model, features, labels) total_loss = sess.run(model.total_loss, feed_dict=feed_dict) self.assertShapeEquals((), total_loss)
def testOneTimeSeriesFeature(self): # Build config. feature_spec = { "time_feature_1": { "length": 20, "is_time_series": True, } } hidden_spec = { "time_feature_1": { "cnn_num_blocks": 2, "cnn_block_size": 2, "cnn_initial_num_filters": 4, "cnn_block_filter_factor": 1.5, "cnn_kernel_size": 3, "convolution_padding": "same", "pool_size": 2, "pool_strides": 2, } } config = configurations.base() config["inputs"]["features"] = feature_spec config["hparams"]["time_series_hidden"] = hidden_spec config = configdict.ConfigDict(config) # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_cnn_model.AstroCNNModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # Validate Tensor shapes. block_1_conv_1 = testing.get_variable_by_name( "time_feature_1_hidden/block_1/conv_1/kernel") self.assertShapeEquals((3, 1, 4), block_1_conv_1) block_1_conv_2 = testing.get_variable_by_name( "time_feature_1_hidden/block_1/conv_2/kernel") self.assertShapeEquals((3, 4, 4), block_1_conv_2) block_2_conv_1 = testing.get_variable_by_name( "time_feature_1_hidden/block_2/conv_1/kernel") self.assertShapeEquals((3, 4, 6), block_2_conv_1) block_2_conv_2 = testing.get_variable_by_name( "time_feature_1_hidden/block_2/conv_2/kernel") self.assertShapeEquals((3, 6, 6), block_2_conv_2) self.assertItemsEqual(["time_feature_1"], model.time_series_hidden_layers.keys()) self.assertShapeEquals( (None, 30), model.time_series_hidden_layers["time_feature_1"]) self.assertEqual(len(model.aux_hidden_layers), 0) self.assertIs(model.time_series_hidden_layers["time_feature_1"], model.pre_logits_concat) # Execute the TensorFlow graph. scaffold = tf.train.Scaffold() scaffold.finalize() with self.test_session() as sess: sess.run([scaffold.init_op, scaffold.local_init_op]) step = sess.run(model.global_step) self.assertEqual(0, step) # Fetch predictions. features = testing.fake_features(feature_spec, batch_size=16) labels = testing.fake_labels(config.hparams.output_dim, batch_size=16) feed_dict = input_ops.prepare_feed_dict(model, features, labels) predictions = sess.run(model.predictions, feed_dict=feed_dict) self.assertShapeEquals((16, 1), predictions)
def testOneTimeSeriesFeature(self): # Build config. feature_spec = { "time_feature_1": { "length": 14, "is_time_series": True, } } hidden_spec = { "time_feature_1": { "num_local_layers": 2, "local_layer_size": 20, "translation_delta": 2, "pooling_type": "max", "dropout_rate": 0.5, } } config = configurations.base() config["inputs"]["features"] = feature_spec config["hparams"]["time_series_hidden"] = hidden_spec config = configdict.ConfigDict(config) # Build model. features = input_ops.build_feature_placeholders(config.inputs.features) labels = input_ops.build_labels_placeholder() model = astro_fc_model.AstroFCModel(features, labels, config.hparams, tf.estimator.ModeKeys.TRAIN) model.build() # Validate Tensor shapes. conv = testing.get_variable_by_name( "time_feature_1_hidden/conv1d/kernel") self.assertShapeEquals((10, 1, 20), conv) fc_1 = testing.get_variable_by_name( "time_feature_1_hidden/fully_connected_1/weights") self.assertShapeEquals((20, 20), fc_1) self.assertItemsEqual(["time_feature_1"], model.time_series_hidden_layers.keys()) self.assertShapeEquals( (None, 20), model.time_series_hidden_layers["time_feature_1"]) self.assertEqual(len(model.aux_hidden_layers), 0) self.assertIs(model.time_series_hidden_layers["time_feature_1"], model.pre_logits_concat) # Execute the TensorFlow graph. scaffold = tf.train.Scaffold() scaffold.finalize() with self.test_session() as sess: sess.run([scaffold.init_op, scaffold.local_init_op]) step = sess.run(model.global_step) self.assertEqual(0, step) # Fetch predictions. features = testing.fake_features(feature_spec, batch_size=16) labels = testing.fake_labels(config.hparams.output_dim, batch_size=16) feed_dict = input_ops.prepare_feed_dict(model, features, labels) predictions = sess.run(model.predictions, feed_dict=feed_dict) self.assertShapeEquals((16, 1), predictions)