def test_four_layers_negative_padding(self): batch_size = 2 input_size = 256 images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): with self.assertRaises(ValueError): pix2pix.pix2pix_discriminator(images, num_filters=[64, 128, 256, 512], padding=-1)
def discriminator(image_batch, unused_conditioning=None): """A thin wrapper around the Pix2Pix discriminator to conform to TFGAN API.""" with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits_4d, _ = pix2pix.pix2pix_discriminator( image_batch, num_filters=[64, 128, 256, 512]) logits_4d.shape.assert_has_rank(4) # Output of logits is 4D. Reshape to 2D, for TFGAN. logits_2d = tf.contrib.layers.flatten(logits_4d) return logits_2d
def test_four_layers_no_padding(self): batch_size = 2 input_size = 256 output_size = self._layer_output_size(input_size, pad=0) output_size = self._layer_output_size(output_size, pad=0) output_size = self._layer_output_size(output_size, pad=0) output_size = self._layer_output_size(output_size, stride=1, pad=0) output_size = self._layer_output_size(output_size, stride=1, pad=0) images = tf.ones((batch_size, input_size, input_size, 3)) with tf.contrib.framework.arg_scope(pix2pix.pix2pix_arg_scope()): logits, end_points = pix2pix.pix2pix_discriminator( images, num_filters=[64, 128, 256, 512], padding=0) self.assertListEqual([batch_size, output_size, output_size, 1], logits.shape.as_list()) self.assertListEqual([batch_size, output_size, output_size, 1], end_points['predictions'].shape.as_list())
def discriminator(image_batch, unused_conditioning=None, depth=64): """A thin wrapper around the pix2pix discriminator to conform to TFGAN API.""" logits, _ = pix2pix.pix2pix_discriminator( image_batch, num_filters=[depth, 2 * depth, 4 * depth, 8 * depth]) return tf.layers.flatten(logits)