示例#1
0
 def testReshapeDepth(self):
     """Tests that depth can be reshaped to the x dimension."""
     fake = tf.placeholder(tf.float32,
                           shape=(None, None, None, self.depth),
                           name='inputs')
     real = _rand(self.batch_size, self.im_height, self.im_width,
                  self.depth)
     with self.test_session() as sess:
         outputs = shapes.transposing_reshape(fake,
                                              src_dim=3,
                                              part_a=4,
                                              part_b=-1,
                                              dest_dim_a=2,
                                              dest_dim_b=3)
         res_image = sess.run([outputs], feed_dict={fake: real})
         self.assertEqual(tuple(res_image[0].shape),
                          (self.batch_size, self.im_height,
                           self.im_width * 4, self.depth / 4))
示例#2
0
    def AddReShape(self, prev_layer, index):
        """Reshapes the input tensor by moving each (x_scale,y_scale) rectangle to.

       the depth dimension. NOTE that the TF convention is that inputs are
       [batch, y, x, depth].

    Args:
      prev_layer: Input tensor.
      index:      Position in model_str to start parsing

    Returns:
      Output tensor, end index in model_str.
    """
        pattern = re.compile(R'(S)(?:{(\w)})?(\d+)\((\d+)x(\d+)\)(\d+),(\d+)')
        m = pattern.match(self.model_str, index)
        if m is None:
            return None, None
        name = self._GetLayerName(m.group(0), index, m.group(2))
        src_dim = int(m.group(3))
        part_a = int(m.group(4))
        part_b = int(m.group(5))
        dest_dim_a = int(m.group(6))
        dest_dim_b = int(m.group(7))
        if part_a == 0:
            part_a = -1
        if part_b == 0:
            part_b = -1
        prev_shape = tf.shape(prev_layer)
        layer = shapes.transposing_reshape(
            prev_layer, src_dim, part_a, part_b, dest_dim_a, dest_dim_b, name=name)
        # Compute scale factors.
        result_shape = tf.shape(layer)
        for i in xrange(len(self.reduction_factors)):
            if self.reduction_factors[i] is not None:
                factor1 = tf.cast(self.reduction_factors[i], tf.float32)
                factor2 = tf.cast(prev_shape[i], tf.float32)
                divisor = tf.cast(result_shape[i], tf.float32)
                self.reduction_factors[i] = tf.div(tf.multiply(factor1, factor2), divisor)
        return layer, m.end()
示例#3
0
 def testTransposingReshape_2_2_3_2_1(self):
     """Case: dest_a == src, dest_b < src: Split with Least sig part going left.
 """
     with self.test_session() as sess:
         fake = tf.placeholder(tf.float32,
                               shape=(None, None, None, 2),
                               name='inputs')
         outputs = shapes.transposing_reshape(fake,
                                              src_dim=2,
                                              part_a=2,
                                              part_b=3,
                                              dest_dim_a=2,
                                              dest_dim_b=1)
         # Make real inputs. The tensor looks like this:
         # tensor=[[[[0, 1][2, 3][4, 5][6, 7][8, 9][10, 11]]
         #          [[12, 13][14, 15][16, 17][18, 19][20, 21][22, 23]]
         #         [[[24, 25]...
         real = np.arange(120).reshape((5, 2, 6, 2))
         np_array = sess.run([outputs], feed_dict={fake: real})[0]
         self.assertEqual(tuple(np_array.shape), (5, 6, 2, 2))
         self.assertAllEqual(np_array[0, :, :, :],
                             [[[0, 1], [6, 7]], [[12, 13], [18, 19]],
                              [[2, 3], [8, 9]], [[14, 15], [20, 21]],
                              [[4, 5], [10, 11]], [[16, 17], [22, 23]]])