def test_animate(self): with patch('matplotlib.image.AxesImage') as mock_axes: with patch('matplotlib.pyplot.imshow', return_value=mock_axes) as mock_imshow: with patch('matplotlib.pyplot.figure') as mock_figure: with patch('matplotlib.pyplot.show', return_value=mock_axes) as mock_show: num_frames = 10 images = [ np.ndarray(shape=(10, 10, 3)) for i in range(num_frames) ] viewer.animate(images, auto_close=True) assert mock_imshow.call_count == 1 assert mock_show.call_count == 1
def test_animate_unsupoprted_dimension(self): with patch('matplotlib.image.AxesImage') as mock_axes: with patch('matplotlib.pyplot.imshow', return_value=mock_axes) as mock_imshow: with patch('matplotlib.pyplot.figure') as mock_figure: with patch('matplotlib.pyplot.show') as mock_show: with patch( 'matplotlib.pyplot.subplot') as mock_subplot: num_frames = 10 images = [ np.ndarray(shape=(10, 10, 3)) for i in range(num_frames) ] with pytest.raises(ValueError): viewer.animate(images=images, comparisons=[[images, images], [images, images]], auto_close=True)
def animate_predictions(model, dataset, mean_image, args): initial_frame = args.initial_frame last_frame = args.last_frame frames = dataset['frames'][initial_frame:last_frame] actions = dataset['actions'][initial_frame + 1:last_frame + 1] if args.lstm: ground_truths, predicted_frames = animate_lstm(model, frames, actions, mean_image, args) else: ground_truths, predicted_frames = animate_ff(model, frames, actions, mean_image, args) viewer.animate(ground_truths, predicted_frames, titles=['ground truth', 'predicted'], fps=10, repeat=True, save_mp4=True, auto_close=True)
def show_sequence(images): viewer.animate(images=images, is_gray=True, save_mp4=True, save_gif=True)
def animate_dataset(dataset, args): initial_frame = args.initial_frame last_frame = args.last_frame frames = [converter.chw2hwc(frame) for frame in dataset['frames']] viewer.animate(frames[initial_frame:last_frame], titles=['dataset'])