示例#1
0
def sigmoid_activation(s, a, b):
    return sigmoid(a * s + b)
示例#2
0
def test_sigmoid(value, expected):
    result = sigmoid(value)
    assert_array_almost_equal(result, expected, decimal=1)
    XX = np.array([*bspl(tt)])
    XX = ((XX - XX.min()) / XX.ptp()) * 2 - 1.0
    XX[:, 0] = XX[:, 0]
    XX[:, 1] = XX[:, 1]
    XX[:, 2] = XX[:, 2]
    NN = N * 4

    fig = plt.figure(figsize=(15, 15))
    ax = fig.add_subplot(111, projection="3d")
    ax.grid(False)
    ax.axis(False)

    w = 1.0
    b = 3.0

    D = sigmoid(w * np.sqrt(XX[:, 0]**2) + b)
    dds = []
    for i in range(NN - 1):
        x, y, z = XX[i:i + 2, 0], XX[i:i + 2, 1], XX[i:i + 2, 2]
        d = (sigmoid(w * np.sqrt(x[0]**2) + b) - D.min()) / D.ptp()
        dds.append(d)
        ax.plot(x, y, z, color=plt.cm.YlOrRd(int(255 * d)), lw=1)

    plt.tight_layout()
    plt.show()

    D = sigmoid(1.0 * np.sqrt(XX[:, 0]**2) + 3.0)
    dds = []
    for i in range(NN - 1):
        x, y, z = XX[i:i + 2, 0], XX[i:i + 2, 1], XX[i:i + 2, 2]
        d = (sigmoid(1.0 * np.sqrt(x[0]**2) + 3.0) - D.min()) / D.ptp()