示例#1
0
        # for cifar10_quick_train_test.prototxt
        # train((train_x, train_y, test_x, test_y), net, 18, caffe_lr, 0.004,
        #      use_cpu=args.use_cpu)
    elif args.model == 'alexnet':
        train_x, test_x = normalize_for_alexnet(train_x, test_x)
        net = alexnet.create_net(args.use_cpu)
        train((train_x, train_y, test_x, test_y),
              net,
              2,
              alexnet_lr,
              0.004,
              use_cpu=args.use_cpu)
    elif args.model == 'vgg':
        train_x, test_x = normalize_for_vgg(train_x, test_x)
        net = vgg.create_net(args.use_cpu)
        train((train_x, train_y, test_x, test_y),
              net,
              250,
              vgg_lr,
              0.0005,
              use_cpu=args.use_cpu)
    else:
        train_x, test_x = normalize_for_alexnet(train_x, test_x)
        net = resnet.create_net(args.use_cpu)
        train((train_x, train_y, test_x, test_y),
              net,
              200,
              resnet_lr,
              1e-4,
              use_cpu=args.use_cpu)
示例#2
0
    args = parser.parse_args()
    assert os.path.exists(args.data), \
        'Pls download the cifar10 dataset via "download_data.py py"'
    print('Loading data ..................')
    train_x, train_y = load_train_data(args.data)
    test_x, test_y = load_test_data(args.data)
    if args.model == 'caffe':
        train_x, test_x = normalize_for_alexnet(train_x, test_x)
        net = caffe_net.create_net(args.use_cpu)
        # for cifar10_full_train_test.prototxt
        train((train_x, train_y, test_x, test_y), net, 160, alexnet_lr, 0.004,
              use_cpu=args.use_cpu)
        # for cifar10_quick_train_test.prototxt
        # train((train_x, train_y, test_x, test_y), net, 18, caffe_lr, 0.004,
        #      use_cpu=args.use_cpu)
    elif args.model == 'cnn':
        train_x, test_x = normalize_for_alexnet(train_x, test_x)
        net = cnn.create_net(args.use_cpu)
        train((train_x, train_y, test_x, test_y), net, 2, alexnet_lr, 0.004,
              use_cpu=args.use_cpu)
    elif args.model == 'vgg':
        train_x, test_x = normalize_for_vgg(train_x, test_x)
        net = vgg.create_net(args.use_cpu)
        train((train_x, train_y, test_x, test_y), net, 250, vgg_lr, 0.0005,
              use_cpu=args.use_cpu)
    else:
        train_x, test_x = normalize_for_alexnet(train_x, test_x)
        net = resnet.create_net(args.use_cpu)
        train((train_x, train_y, test_x, test_y), net, 200, resnet_lr, 1e-4,
              use_cpu=args.use_cpu)