def define_imagenet_flags(): resnet_run_loop.define_resnet_flags( resnet_size_choices=['18', '34', '50', '101', '152', '200'], dynamic_loss_scale=True, fp16_implementation=True) flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(train_epochs=90)
def define_cifar_flags(hp, model_id, model_dir, data_dir, train_epochs, total_epochs, epoch_index): # Xinyi modified resnet_run_loop.define_resnet_flags() flags.adopt_module_key_flags(resnet_run_loop) # Xinyi add followings flags.DEFINE_string( name="optimizer", short_name="opt", default=hp['opt_case']['optimizer'], help=help_wrap("The name of optimizer type")) if hp['opt_case']['optimizer']=='Momentum' \ or hp['opt_case']['optimizer']=='RMSProp': flags.DEFINE_float( name="momentum", short_name="mm", default=hp['opt_case']['momentum'], help=help_wrap("The momentum of Momentum SGD or RMSProp")) if hp['opt_case']['optimizer']=='RMSProp': flags.DEFINE_float( name="grad_decay", short_name="rmspd", default=hp['opt_case']['grad_decay'], help=help_wrap("The decay of RMSProp")) flags.DEFINE_float( name="learning_rate", short_name="lr", default=hp['opt_case']['lr'], help=help_wrap("The initial learning rate of optimizer")) flags.DEFINE_float( name="decay_rate", short_name="lrdr", default=hp['decay_rate'], help=help_wrap("The base term of learning rate decay function")) flags.DEFINE_integer( name="decay_steps", short_name="lrds", default=hp['decay_steps'], help=help_wrap("The power term of learning rate decay function" "This value is in percentage of train_epochs" "Zero value means turnning off decay")) flags.DEFINE_string( name="initializer", short_name="initn", default=hp['initializer'], help=help_wrap("The name of initialization method" "None value means glorot_uniform_initializer")) flags.DEFINE_string( name="regularizer", short_name="regn", default=hp['regularizer'], help=help_wrap("The name of regularization method" "None value means turnning off weight decay")) flags.DEFINE_float( name="weight_decay", short_name="wd", default=hp['weight_decay'], help=help_wrap("The amount of regularization" "If regularizer=None, the variable becomes useless")) flags.DEFINE_integer( name="model_id", short_name="mid", default=model_id, help=help_wrap("The index of model in the population")) flags.DEFINE_integer( name="total_epochs", short_name="ttep", default=train_epochs, help=help_wrap("The total epochs the model will be trained")) flags.DEFINE_integer( name="epoch_index", short_name="epi", default=epoch_index, help=help_wrap("The epoch index write to csv.")) flags_core.set_defaults(data_dir=data_dir, model_dir=model_dir, resnet_size='50', train_epochs=train_epochs, epochs_between_evals=1, batch_size=hp['batch_size'])
def define_cifar_flags(): resnet_run_loop.define_resnet_flags() flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(data_dir='/home/yotamg/data/rgb/train', model_dir=RESOURCES_OUT_DIR, resnet_size='32', train_epochs=2500, epochs_between_evals=10, batch_size=128)
def define_cifar_flags(): resnet_run_loop.define_resnet_flags() flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(data_dir='', model_dir='', resnet_size='56', train_epochs=182, epochs_between_evals=5, batch_size=128, image_bytes_as_serving_input=False)
def define_imagenet_flags(): resnet_run_loop.define_resnet_flags( resnet_size_choices=['18', '34', '50', '101', '152', '200']) flags.adopt_module_key_flags(resnet_run_loop) flags_core.set_defaults(train_epochs=90)