tf.config.set_soft_device_placement(True) # tf.config.experimental.set_visible_devices(NUM_PARALLEL_EXEC_UNITS, 'CPU') os.environ["OMP_NUM_THREADS"] = str(NUM_PARALLEL_EXEC_UNITS) os.environ["KMP_BLOCKTIME"] = "30" os.environ["KMP_SETTINGS"] = "1" os.environ["KMP_AFFINITY"] = "granularity=fine,verbose,compact,1,0" # ================================================================================== # Training and prediction with random batches of clouds cloud_dir = data_path / 'clouds' training6(img_list, pctls, model_func, feat_list_new, data_path, batch, T, DROPOUT_RATE, **model_params) prediction(img_list, pctls, feat_list_new, data_path, batch, remove_perm=True, **model_params) viz = VizFuncs(viz_params) viz.metric_plots() viz.cir_image() viz.time_plot() viz.false_map() viz.metric_plots_multi() viz.time_size()
'saline_lake_sed', 'alluv_coastal_sed_fine', 'coastal_sed_coarse', 'GSW_distSeasonal', 'aspect', 'curve', 'elevation', 'hand', 'slope', 'spi', 'twi', 'sti', 'GSW_perm', 'flooded' ] img_list = ['4337_LC08_026038_20160325_1'] viz_params = { 'img_list': img_list, 'pctls': pctls, 'data_path': data_path, 'batch': batch, 'feat_list_new': feat_list_new } viz = VizFuncs(viz_params) viz.cir_image(overwrite=True) # Doesn't work very well for CIR images - water and dry earth are both turqoise. def hist_equalize_cir(img, view_hist=False, view_img=False, std_low=1.75, std_high=1.75, save=False): spectra_stack_path = data_path / 'images' / img / 'stack' / 'spectra_stack.tif' band_combo_dir = data_path / 'band_combos' cir_file = band_combo_dir / '{}'.format(img + '_cir_img' + '.png') with rasterio.open(spectra_stack_path, 'r') as f: nir, red, green = f.read(5), f.read(4), f.read(3)