def main(args=None): parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.') parser.add_argument('--coco_path', help='Path to COCO directory') parser.add_argument('--model_path', help='Path to model', type=str) parser = parser.parse_args(args) dataset_val = CocoDataset(parser.coco_path, set_name='val2017', transform=transforms.Compose([Normalizer(), Resizer()])) dataset_val.image_ids = dataset_val.image_ids[:50] # TEST # Create the model retinanet = model.resnet50(num_classes=dataset_val.num_classes(), pretrained=True) use_gpu = True if use_gpu: if torch.cuda.is_available(): retinanet = retinanet.cuda() if torch.cuda.is_available(): retinanet.load_state_dict(torch.load(parser.model_path)) retinanet = torch.nn.DataParallel(retinanet).cuda() else: retinanet.load_state_dict(torch.load(parser.model_path)) retinanet = torch.nn.DataParallel(retinanet) retinanet.training = False retinanet.eval() retinanet.module.freeze_bn() coco_eval.evaluate_coco(dataset_val, retinanet)
def main(args=None): parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.') parser.add_argument('--dataset', help='Dataset type, must be one of csv or coco.') parser.add_argument('--coco_path', help='Path to COCO directory') parser.add_argument('--csv_train', help='Path to file containing training annotations (see readme)') parser.add_argument('--csv_classes', help='Path to file containing class list (see readme)') parser.add_argument('--csv_val', help='Path to file containing validation annotations (optional, see readme)') parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50) parser.add_argument('--epochs', help='Number of epochs', type=int, default=100) parser = parser.parse_args(args) # Create the data loaders if parser.dataset == 'coco': if parser.coco_path is None: raise ValueError('Must provide --coco_path when training on COCO,') dataset_train = CocoDataset(parser.coco_path, set_name='train2017', transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()])) dataset_val = CocoDataset(parser.coco_path, set_name='val2017', transform=transforms.Compose([Normalizer(), Resizer()])) dataset_val.image_ids = dataset_val.image_ids[:100] # TEST elif parser.dataset == 'csv': if parser.csv_train is None: raise ValueError('Must provide --csv_train when training on COCO,') if parser.csv_classes is None: raise ValueError('Must provide --csv_classes when training on COCO,') dataset_train = CSVDataset(train_file=parser.csv_train, class_list=parser.csv_classes, transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()])) if parser.csv_val is None: dataset_val = None print('No validation annotations provided.') else: dataset_val = CSVDataset(train_file=parser.csv_val, class_list=parser.csv_classes, transform=transforms.Compose([Normalizer(), Resizer()])) else: raise ValueError('Dataset type not understood (must be csv or coco), exiting.') sampler = AspectRatioBasedSampler(dataset_train, batch_size=2, drop_last=False) dataloader_train = DataLoader(dataset_train, num_workers=3, collate_fn=collater, batch_sampler=sampler) if dataset_val is not None: sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=1, drop_last=False) dataloader_val = DataLoader(dataset_val, num_workers=3, collate_fn=collater, batch_sampler=sampler_val) # Create the model if parser.depth == 18: retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 34: retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 50: retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 101: retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True) elif parser.depth == 152: retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True) else: raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152') use_gpu = True if use_gpu: if torch.cuda.is_available(): retinanet = retinanet.cuda() if torch.cuda.is_available(): retinanet = torch.nn.DataParallel(retinanet).cuda() else: retinanet = torch.nn.DataParallel(retinanet) retinanet.training = True optimizer = optim.Adam(retinanet.parameters(), lr=1e-5) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True) loss_hist = collections.deque(maxlen=500) retinanet.train() retinanet.module.freeze_bn() print('Num training images: {}'.format(len(dataset_train))) for epoch_num in range(parser.epochs): retinanet.train() retinanet.module.freeze_bn() epoch_loss = [] for iter_num, data in enumerate(dataloader_train): try: optimizer.zero_grad() if torch.cuda.is_available(): classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot']]) else: classification_loss, regression_loss = retinanet([data['img'].float(), data['annot']]) classification_loss = classification_loss.mean() regression_loss = regression_loss.mean() loss = classification_loss + regression_loss if bool(loss == 0): continue loss.backward() torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1) optimizer.step() loss_hist.append(float(loss)) epoch_loss.append(float(loss)) print( 'Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format( epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist))) del classification_loss del regression_loss except Exception as e: print(e) continue if parser.dataset == 'coco': print('Evaluating dataset') coco_eval.evaluate_coco(dataset_val, retinanet) elif parser.dataset == 'csv' and parser.csv_val is not None: print('Evaluating dataset') mAP = csv_eval.evaluate(dataset_val, retinanet) scheduler.step(np.mean(epoch_loss)) torch.save(retinanet.module, '{}_retinanet_{}.pt'.format(parser.dataset, epoch_num)) retinanet.eval() torch.save(retinanet, 'model_final.pt')