def retinex_shadow_removal(image, retinex_type):
    with open('config.json', 'r') as f:
        config = json.load(f)
    if retinex_type == 'automatedMSRCR':
        return retinex.automatedMSRCR(image, config['sigma_list'])
    elif retinex_type == 'MSRCRP':
        return retinex.MSRCP(image, config['sigma_list'], config['low_clip'],
                             config['high_clip'])
    elif retinex_type == 'MSRCR':
        return retinex.MSRCR(image, config['sigma_list'], config['G'],
                             config['b'], config['alpha'], config['beta'],
                             config['low_clip'], config['high_clip'])
    else:
        return image
示例#2
0
文件: run.py 项目: leokvw/Retinex
    exit()
# 读入自定义参数
with open('config.json', 'r') as f:
    config = json.load(f)
# 遍历读入的图像
for img_name in img_list:
    if img_name == '.gitkeep':
        continue
    # 读入图像
    img = cv2.imread(os.path.join(data_path, img_name))

    img_histogram = coloredHistoEqual(img)
    img_gamma = adjust_gamma(img)
    # 多尺度Retinex带色彩恢复
    img_msrcr = retinex.MSRCR(img, config['sigma_list'], config['G'],
                              config['b'], config['alpha'], config['beta'],
                              config['low_clip'], config['high_clip'])

    img_amsrcr = retinex.automatedMSRCR(img, config['sigma_list'])
    # MSR with chromaticity preservation
    img_msrcp = retinex.MSRCP(img, config['sigma_list'], config['low_clip'],
                              config['high_clip'])

    # 实验结果
    shape = img.shape
    cv2.imshow('Image', img)
    cv2.imshow('retinex', img_msrcr)
    cv2.imshow('Histogram equalization', img_histogram)
    cv2.imshow('Gamma Correction', img_gamma)
    cv2.imshow('Automated retinex', img_amsrcr)
    cv2.imshow('MSRCP', img_msrcp)
示例#3
0
import json

import retinex

data_path = 'data'
# size = 3
img = cv2.imread('timg.jpg')

img_ssr_re = retinex.singleScaleRetinex(img, 15)
img_ssr_cl = retinex.colorRestoration(img, 125.0, 46.0)
img_ssr = 5 * (img_ssr_re * img_ssr_cl + 25)
cv2.imshow('ssr', img_ssr)

img_msrcr = retinex.MSRCR(
    img,
    80,
    5.0,
    25.0,
    125.0,
    46.0,
    0.01,
    0.99
)

# cv2.imshow('MSRCR retinex', img_msrcr)

shape = img.shape
# cv2.imshow('Image', img)

cv2.waitKey()