示例#1
0
def get_golden_ranking(question):
    ideal_answer = unicode(question.ideal_answer[0]).encode("ascii", 'ignore')
    sentences = question.sentences
    ranked_sentences = RM.get_ranked_sentences(question_text=ideal_answer,
                                               sentences=sentences,
                                               retrieval_algo='BM25')
    return ranked_sentences
def get_golden_ranking(question):
    ideal_answer = question['ideal_answer']
    sentences = RM.get_sentences(question['snippets'])
    sentences = RM.preprocess_sentences(sentences)
    ranked_sentences = RM.get_ranked_sentences(question_text=ideal_answer,
                                               sentences=sentences,
                                               retrieval_algo='BM25')
    return ranked_sentences
示例#3
0
    def ranked_sentences(self):
        scores = {}
        for sentence, score in retrieval_model.get_ranked_sentences(
                self.question, self.snippet_sentences, BM25):
            scores[sentence] = [score]
        for sentence, score in retrieval_model.get_ranked_sentences(
                self.question, self.snippet_sentences, INDRI):
            scores[sentence].append(score)

        all_sentences = [(bm25_score, indri_score, s)
                         for s, [bm25_score, indri_score] in scores.items()]
        all_sentences = sorted(all_sentences, reverse=True)
        sentences = [{
            TEXT: s,
            BM25: bm25_score,
            INDRI: indri_score
        } for (bm25_score, indri_score, s) in all_sentences]
        return sentences
示例#4
0
def create_feature_vectors(question):

    sentences = set(question.sentences)
    feature_vectors = []

    # ranked sentences also gives a score which can be used as feature

    ranked_sentences_bm25 = RM.get_ranked_sentences(question_text=question.question_text, sentences=sentences,
                                                    retrieval_algo='BM25')

    # ranked sentences also gives a score which can be used as feature

    ranked_sentences_Indri = RM.get_ranked_sentences(question_text=question.question_text, sentences=sentences,
                                                     retrieval_algo='Indri')

    # TO DO @Gabe, above results can be used for LeToR

    return feature_vectors