示例#1
0
    def test_from_parameters(self):
        """Test from_parameters."""
        coupling_matrix = np.array([[1.0, 1.0 + 1.0j, 2.0 - 2.0j],
                                    [1.0 - 1.0j, 0.0, 0.0],
                                    [2.0 + 2.0j, 0.0, 1.0]])

        ism = cast(IsingModel, IsingModel.from_parameters(coupling_matrix))
        with self.subTest("Check the graph."):
            target_graph = PyGraph(multigraph=False)
            target_graph.add_nodes_from(range(3))
            target_weight = [(0, 0, 1.0), (0, 1, 1.0 + 1.0j),
                             (0, 2, 2.0 - 2.0j), (2, 2, 1.0)]
            target_graph.add_edges_from(target_weight)
            self.assertTrue(
                is_isomorphic(ism.lattice.graph,
                              target_graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the coupling matrix."):
            assert_array_equal(ism.coupling_matrix(), coupling_matrix)

        with self.subTest("Check the second q op representation."):
            coupling = [
                ("Z_0 Z_1", 1.0 + 1.0j),
                ("Z_0 Z_2", 2.0 - 2.0j),
                ("X_0", 1.0),
                ("X_2", 1.0),
            ]

            ham = coupling

            self.assertSetEqual(set(ham), set(ism.second_q_ops().to_list()))
示例#2
0
    def test_from_nodes_and_edges(self):
        """Test from_nodes_edges."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(6))
        weighted_edge_list = [
            (0, 1, 1.0 + 1.0j),
            (0, 2, -1.0),
            (2, 3, 2.0),
            (4, 2, -1.0),
            (4, 4, 3.0),
            (2, 5, -1.0),
        ]
        graph.add_edges_from(weighted_edge_list)
        lattice = Lattice(graph)
        target_num_nodes = 6
        target_weighted_edge_list = [
            (2, 5, -1.0),
            (4, 4, 3),
            (4, 2, -1.0),
            (2, 3, 2.0),
            (0, 2, -1.0),
            (0, 1, 1.0 + 1.0j),
        ]
        target_lattice = Lattice.from_nodes_and_edges(
            target_num_nodes, target_weighted_edge_list)

        self.assertTrue(
            is_isomorphic(lattice.graph,
                          target_lattice.graph,
                          edge_matcher=lambda x, y: x == y))
示例#3
0
    def test_nonnumeric_weight_raises(self):
        """Test the initialization with a graph with non-numeric edge weights raises."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(3))
        graph.add_edges_from([(0, 1, 1), (1, 2, "banana")])

        with self.assertRaises(ValueError):
            _ = Lattice(graph)
示例#4
0
    def test_uniform_parameters(self):
        """Test uniform_parameters."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(3))
        weighted_edge_list = [
            (0, 1, 1.0 + 1.0j),
            (0, 2, -1.0),
            (1, 1, 2.0),
        ]
        graph.add_edges_from(weighted_edge_list)
        lattice = Lattice(graph)
        uniform_ism = cast(
            IsingModel,
            IsingModel.uniform_parameters(
                lattice,
                uniform_interaction=1.0 + 1.0j,
                uniform_onsite_potential=0.0,
            ),
        )
        with self.subTest("Check the graph."):
            target_graph = PyGraph(multigraph=False)
            target_graph.add_nodes_from(range(3))
            target_weight = [
                (0, 1, 1.0 + 1.0j),
                (0, 2, 1.0 + 1.0j),
                (0, 0, 0.0),
                (1, 1, 0.0),
                (2, 2, 0.0),
            ]
            target_graph.add_edges_from(target_weight)
            self.assertTrue(
                is_isomorphic(uniform_ism.lattice.graph,
                              target_graph,
                              edge_matcher=lambda x, y: x == y))
        with self.subTest("Check the coupling matrix."):
            coupling_matrix = uniform_ism.coupling_matrix()
            target_matrix = np.array([[0.0, 1.0 + 1.0j, 1.0 + 1.0j],
                                      [1.0 - 1.0j, 0.0, 0.0],
                                      [1.0 - 1.0j, 0.0, 0.0]])
            assert_array_equal(coupling_matrix, target_matrix)

        with self.subTest("Check the second q op representation."):
            coupling = [
                ("Z_0 Z_1", 1.0 + 1.0j),
                ("Z_0 Z_2", 1.0 + 1.0j),
                ("X_0", 0.0),
                ("X_1", 0.0),
                ("X_2", 0.0),
            ]

            ham = coupling

            self.assertSetEqual(set(ham),
                                set(uniform_ism.second_q_ops().to_list()))
示例#5
0
    def test_init(self):
        """Test init."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(6))
        weighted_edge_list = [
            (0, 1, 1.0 + 1.0j),
            (0, 2, -1.0),
            (2, 3, 2.0),
            (2, 4, -1.0),
            (4, 4, 3.0),
            (2, 5, -1.0),
        ]
        graph.add_edges_from(weighted_edge_list)
        lattice = Lattice(graph)

        with self.subTest("Check the type of lattice."):
            self.assertIsInstance(lattice, Lattice)

        with self.subTest("Check graph."):
            target_graph = PyGraph(multigraph=False)
            target_graph.add_nodes_from(range(6))
            target_weighted_edge_list = [
                (4, 4, 3.0),
                (0, 1, 1 + 1j),
                (2, 3, 2.0),
                (2, 4, -1.0),
                (2, 5, -1.0),
                (0, 2, -1),
            ]
            target_graph.add_edges_from(target_weighted_edge_list)
            self.assertTrue(
                is_isomorphic(lattice.graph,
                              target_graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the number of nodes."):
            self.assertEqual(lattice.num_nodes, 6)

        with self.subTest("Check the set of nodes."):
            self.assertSetEqual(set(lattice.node_indexes), set(range(6)))

        with self.subTest("Check the set of weights."):
            target_set = {
                (0, 1, 1 + 1j),
                (4, 4, 3),
                (2, 5, -1.0),
                (0, 2, -1.0),
                (2, 3, 2.0),
                (2, 4, -1.0),
            }
            self.assertEqual(set(lattice.weighted_edge_list), target_set)
示例#6
0
    def test_init(self):
        """Test init."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(3))
        weighted_edge_list = [
            (0, 1, 1.0 + 1.0j),
            (0, 2, -1.0),
            (1, 1, 2.0),
        ]
        graph.add_edges_from(weighted_edge_list)
        lattice = Lattice(graph)
        fhm = FermiHubbardModel(lattice, onsite_interaction=10.0)

        with self.subTest("Check the graph."):
            self.assertTrue(
                is_isomorphic(fhm.lattice.graph,
                              lattice.graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the hopping matrix"):
            hopping_matrix = fhm.hopping_matrix()
            target_matrix = np.array([[0.0, 1.0 + 1.0j, -1.0],
                                      [1.0 - 1.0j, 2.0, 0.0], [-1.0, 0.0,
                                                               0.0]])
            assert_array_equal(hopping_matrix, target_matrix)

        with self.subTest("Check the second q op representation."):
            hopping = [
                ("+_0 -_2", 1.0 + 1.0j),
                ("-_0 +_2", -(1.0 - 1.0j)),
                ("+_0 -_4", -1.0),
                ("-_0 +_4", 1.0),
                ("+_1 -_3", 1.0 + 1.0j),
                ("-_1 +_3", -(1.0 - 1.0j)),
                ("+_1 -_5", -1.0),
                ("-_1 +_5", 1.0),
                ("+_2 -_2", 2.0),
                ("+_3 -_3", 2.0),
            ]

            interaction = [
                ("+_0 -_0 +_1 -_1", 10.0),
                ("+_2 -_2 +_3 -_3", 10.0),
                ("+_4 -_4 +_5 -_5", 10.0),
            ]

            ham = hopping + interaction

            self.assertSetEqual(
                set(ham),
                set(fhm.second_q_ops(display_format="sparse").to_list()))
示例#7
0
    def test_from_parameters(self):
        """Test from_parameters."""
        hopping_matrix = np.array([[1.0, 1.0 + 1.0j, 2.0 + 2.0j],
                                   [1.0 - 1.0j, 0.0, 0.0],
                                   [2.0 - 2.0j, 0.0, 1.0]])

        onsite_interaction = 10.0
        fhm = FermiHubbardModel.from_parameters(hopping_matrix,
                                                onsite_interaction)
        with self.subTest("Check the graph."):
            target_graph = PyGraph(multigraph=False)
            target_graph.add_nodes_from(range(3))
            target_weight = [(0, 0, 1.0), (0, 1, 1.0 + 1.0j),
                             (0, 2, 2.0 + 2.0j), (2, 2, 1.0)]
            target_graph.add_edges_from(target_weight)
            self.assertTrue(
                is_isomorphic(fhm.lattice.graph,
                              target_graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the hopping matrix."):
            assert_array_equal(fhm.hopping_matrix(), hopping_matrix)

        with self.subTest("Check the second q op representation."):
            hopping = [
                ("+_0 -_2", 1.0 + 1.0j),
                ("-_0 +_2", -(1.0 - 1.0j)),
                ("+_0 -_4", 2.0 + 2.0j),
                ("-_0 +_4", -(2.0 - 2.0j)),
                ("+_1 -_3", 1.0 + 1.0j),
                ("-_1 +_3", -(1.0 - 1.0j)),
                ("+_1 -_5", 2.0 + 2.0j),
                ("-_1 +_5", -(2.0 - 2.0j)),
                ("+_0 -_0", 1.0),
                ("+_1 -_1", 1.0),
                ("+_4 -_4", 1.0),
                ("+_5 -_5", 1.0),
            ]

            interaction = [
                ("+_0 -_0 +_1 -_1", onsite_interaction),
                ("+_2 -_2 +_3 -_3", onsite_interaction),
                ("+_4 -_4 +_5 -_5", onsite_interaction),
            ]

            ham = hopping + interaction

            self.assertSetEqual(
                set(ham),
                set(fhm.second_q_ops(display_format="sparse").to_list()))
示例#8
0
    def from_nodes_and_edges(
        cls, num_nodes: int, weighted_edges: List[Tuple[int, int, complex]]
    ) -> "Lattice":
        """Return an instance of Lattice from the number of nodes and the list of edges.

        Args:
            num_nodes: The number of nodes.
            weighted_edges: A list of tuples consisting of two nodes and the weight between them.
        Returns:
            Lattice generated from lists of nodes and edges.
        """
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(num_nodes))
        graph.add_edges_from(weighted_edges)
        return cls(graph)
示例#9
0
    def test_from_networkx(self):
        """Test initialization from a networkx graph."""
        graph = nx.Graph()
        graph.add_nodes_from(range(5))
        graph.add_edges_from([(i, i + 1) for i in range(4)])
        lattice = Lattice(graph)

        target_graph = PyGraph()
        target_graph.add_nodes_from(range(5))
        target_graph.add_edges_from([(i, i + 1, 1) for i in range(4)])

        self.assertTrue(
            is_isomorphic(lattice.graph,
                          target_graph,
                          edge_matcher=lambda x, y: x == y))
示例#10
0
    def test_to_adjacency_matrix(self):
        """Test to_adjacency_matrix."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(3))
        weighted_edge_list = [(0, 1, 1.0 + 1.0j), (0, 2, -1.0), (2, 2, 3)]
        graph.add_edges_from(weighted_edge_list)
        lattice = Lattice(graph)

        target_matrix = np.array([[0, 1 + 1j, -1.0], [1 - 1j, 0, 0],
                                  [-1.0, 0, 3.0]])
        assert_array_equal(lattice.to_adjacency_matrix(weighted=True),
                           target_matrix)

        target_matrix = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]])
        assert_array_equal(lattice.to_adjacency_matrix(), target_matrix)
示例#11
0
    def _generate_lattice_from_parameters(interaction_matrix: np.ndarray):
        # make a graph from the interaction matrix.
        # This should be replaced by from_adjacency_matrix of retworkx.
        shape = interaction_matrix.shape
        if len(shape) != 2 or shape[0] != shape[1]:
            raise ValueError(
                f"Invalid shape of `interaction_matrix`, {shape},  is given."
                "It must be a square matrix.")

        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(shape[0]))
        for source_index in range(shape[0]):
            for target_index in range(source_index, shape[0]):
                weight = interaction_matrix[source_index, target_index]
                if not weight == 0.0:
                    graph.add_edge(source_index, target_index, weight)
        return Lattice(graph)
示例#12
0
    def test_edges_removed(self):
        """Test the initialization with a graph where edges have been removed."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(3))
        graph.add_edges_from([(0, 1, 1), (1, 2, 1)])
        graph.remove_edge_from_index(0)

        lattice = Lattice(graph)

        target_graph = PyGraph(multigraph=False)
        target_graph.add_nodes_from(range(3))
        target_graph.add_edges_from([(1, 2, 1)])

        self.assertTrue(
            is_isomorphic(lattice.graph,
                          target_graph,
                          edge_matcher=lambda x, y: x == y))
示例#13
0
 def test_copy(self):
     """Test test_copy."""
     graph = PyGraph(multigraph=False)
     graph.add_nodes_from(range(6))
     weighted_edge_list = [
         (0, 1, 1.0 + 1.0j),
         (0, 2, -1.0),
         (2, 3, 2.0),
         (2, 4, -1.0),
         (4, 4, 3.0),
         (2, 5, -1.0),
     ]
     graph.add_edges_from(weighted_edge_list)
     lattice = Lattice(graph)
     lattice_copy = lattice.copy()
     self.assertTrue(
         is_isomorphic(lattice_copy.graph,
                       graph,
                       edge_matcher=lambda x, y: x == y))
示例#14
0
    def test_init(self):
        """Test init."""
        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(3))
        weighted_edge_list = [
            (0, 1, 1.0 + 1.0j),
            (0, 2, -1.0),
            (1, 1, 2.0),
        ]
        graph.add_edges_from(weighted_edge_list)
        lattice = Lattice(graph)
        ism = IsingModel(lattice)

        with self.subTest("Check the graph."):
            self.assertTrue(
                is_isomorphic(ism.lattice.graph,
                              lattice.graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the coupling matrix"):
            coupling_matrix = ism.coupling_matrix()
            target_matrix = np.array([[0.0, 1.0 + 1.0j, -1.0],
                                      [1.0 - 1.0j, 2.0, 0.0], [-1.0, 0.0,
                                                               0.0]])
            assert_array_equal(coupling_matrix, target_matrix)

        with self.subTest("Check the second q op representation."):
            coupling = [
                ("Z_0 Z_1", 1.0 + 1.0j),
                ("Z_0 Z_2", -1.0),
                ("X_1", 2.0),
            ]

            ham = coupling

            self.assertSetEqual(set(ham), set(ism.second_q_ops().to_list()))
示例#15
0
    def test_init(self):
        """Test init."""
        rows = 3
        cols = 2
        edge_parameter = (1.0 + 1.0j, 2.0 + 2.0j)
        onsite_parameter = 1.0
        boundary_condition = (BoundaryCondition.PERIODIC,
                              BoundaryCondition.OPEN)
        square = SquareLattice(rows, cols, edge_parameter, onsite_parameter,
                               boundary_condition)

        with self.subTest("Check the graph."):
            target_graph = PyGraph(multigraph=False)
            target_graph.add_nodes_from(range(6))
            weighted_edge_list = [
                (0, 1, 1.0 + 1.0j),
                (1, 2, 1.0 + 1.0j),
                (0, 2, 1.0 - 1.0j),
                (3, 4, 1.0 + 1.0j),
                (4, 5, 1.0 + 1.0j),
                (3, 5, 1.0 - 1.0j),
                (0, 3, 2.0 + 2.0j),
                (1, 4, 2.0 + 2.0j),
                (2, 5, 2.0 + 2.0j),
                (0, 0, 1.0),
                (1, 1, 1.0),
                (2, 2, 1.0),
                (3, 3, 1.0),
                (4, 4, 1.0),
                (5, 5, 1.0),
            ]
            target_graph.add_edges_from(weighted_edge_list)
            self.assertTrue(
                is_isomorphic(square.graph,
                              target_graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the number of nodes."):
            self.assertEqual(square.num_nodes, 6)

        with self.subTest("Check the set of nodes."):
            self.assertSetEqual(set(square.node_indexes), set(range(6)))

        with self.subTest("Check the set of weights."):
            target_set = {
                (0, 1, 1.0 + 1.0j),
                (1, 2, 1.0 + 1.0j),
                (0, 2, 1.0 - 1.0j),
                (3, 4, 1.0 + 1.0j),
                (4, 5, 1.0 + 1.0j),
                (3, 5, 1.0 - 1.0j),
                (0, 3, 2.0 + 2.0j),
                (1, 4, 2.0 + 2.0j),
                (2, 5, 2.0 + 2.0j),
                (0, 0, 1.0),
                (1, 1, 1.0),
                (2, 2, 1.0),
                (3, 3, 1.0),
                (4, 4, 1.0),
                (5, 5, 1.0),
            }
            self.assertSetEqual(set(square.weighted_edge_list), target_set)

        with self.subTest("Check the adjacency matrix."):
            target_matrix = np.array([
                [1.0, 1.0 + 1.0j, 1.0 - 1.0j, 2.0 + 2.0j, 0.0, 0.0],
                [1.0 - 1.0j, 1.0, 1.0 + 1.0j, 0.0, 2.0 + 2.0j, 0.0],
                [1.0 + 1.0j, 1.0 - 1.0j, 1.0, 0.0, 0.0, 2.0 + 2.0j],
                [2.0 - 2.0j, 0.0, 0.0, 1.0, 1.0 + 1.0j, 1.0 - 1.0j],
                [0.0, 2.0 - 2.0j, 0.0, 1.0 - 1.0j, 1.0, 1.0 + 1.0j],
                [0.0, 0.0, 2.0 - 2.0j, 1.0 + 1.0j, 1.0 - 1.0j, 1.0],
            ])

            assert_array_equal(square.to_adjacency_matrix(weighted=True),
                               target_matrix)
示例#16
0
    def __init__(
        self,
        rows: int,
        cols: int,
        edge_parameter: Union[complex, Tuple[complex, complex, complex]] = 1.0,
        onsite_parameter: complex = 0.0,
        boundary_condition: BoundaryCondition = BoundaryCondition.OPEN,
    ) -> None:
        """
        Args:
            rows: Length of the x direction.
            cols: Length of the y direction.
            edge_parameter: Weights on the edges in x, y and diagonal directions.
                This is specified as a tuple of length 3 or a single value.
                When it is a single value, it is interpreted as a tuple of length 3
                consisting of the same values.
                Defaults to 1.0,
            onsite_parameter: Weight on the self-loops, which are edges connecting a node to itself.
                Defaults to 0.0.
            boundary_condition: Boundary condition for the lattice.
                The available boundary conditions are:
                BoundaryCondition.OPEN, BoundaryCondition.PERIODIC.
                Defaults to BoundaryCondition.OPEN.

        Raises:
            ValueError: Given size, edge parameter or boundary condition are invalid values.
        """
        self.rows = rows
        self.cols = cols
        self.size = (rows, cols)
        self.dim = 2
        self.boundary_condition = boundary_condition

        if rows < 2 or cols < 2 or (rows, cols) == (2, 2):
            # If it's True, triangular lattice can't be well defined.
            raise ValueError("Both of `rows` and `cols` must not be (2, 2)"
                             "and must be greater than or equal to 2.")

        if isinstance(edge_parameter, (int, float, complex)):
            edge_parameter = (edge_parameter, edge_parameter, edge_parameter)
        elif isinstance(edge_parameter, tuple):
            if len(edge_parameter) != 3:
                raise ValueError(
                    f"The length of `edge_parameter` must be 3, not {len(edge_parameter)}."
                )

        self.edge_parameter = edge_parameter
        self.onsite_parameter = onsite_parameter

        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(np.prod(self.size)))

        # add edges excluding the boundary edges
        bulk_edges = self._bulk_edges()
        graph.add_edges_from(bulk_edges)

        # add self-loops
        self_loop_list = self._self_loops()
        graph.add_edges_from(self_loop_list)

        # add edges that cross the boundaries
        boundary_edge_list = self._boundary_edges()
        graph.add_edges_from(boundary_edge_list)

        # a list of edges that depend on the boundary condition
        self.boundary_edges = [(edge[0], edge[1])
                               for edge in boundary_edge_list]
        super().__init__(graph)
        # default position
        self.pos = self._default_position()
    def test_init(self):
        """Test init."""
        size = (2, 2, 2)
        edge_parameter = (1.0 + 1.0j, 0.0, -2.0 - 2.0j)
        onsite_parameter = 5.0
        boundary_condition = (
            BoundaryCondition.OPEN,
            BoundaryCondition.PERIODIC,
            BoundaryCondition.OPEN,
        )
        hyper_cubic = HyperCubicLattice(size, edge_parameter, onsite_parameter,
                                        boundary_condition)

        with self.subTest("Check the graph."):
            target_graph = PyGraph(multigraph=False)
            target_graph.add_nodes_from(range(8))
            weighted_edge_list = [
                (0, 1, 1.0 + 1.0j),
                (2, 3, 1.0 + 1.0j),
                (4, 5, 1.0 + 1.0j),
                (6, 7, 1.0 + 1.0j),
                (0, 2, 0.0),
                (1, 3, 0.0),
                (4, 6, 0.0),
                (5, 7, 0.0),
                (0, 4, -2.0 - 2.0j),
                (1, 5, -2.0 - 2.0j),
                (2, 6, -2.0 - 2.0j),
                (3, 7, -2.0 - 2.0j),
                (0, 0, 5.0),
                (1, 1, 5.0),
                (2, 2, 5.0),
                (3, 3, 5.0),
                (4, 4, 5.0),
                (5, 5, 5.0),
                (6, 6, 5.0),
                (7, 7, 5.0),
            ]
            target_graph.add_edges_from(weighted_edge_list)
            self.assertTrue(
                is_isomorphic(hyper_cubic.graph,
                              target_graph,
                              edge_matcher=lambda x, y: x == y))

        with self.subTest("Check the number of nodes."):
            self.assertEqual(hyper_cubic.num_nodes, 8)

        with self.subTest("Check the set of nodes."):
            self.assertSetEqual(set(hyper_cubic.node_indexes), set(range(8)))

        with self.subTest("Check the set of weights."):
            target_set = {
                (0, 1, 1.0 + 1.0j),
                (2, 3, 1.0 + 1.0j),
                (4, 5, 1.0 + 1.0j),
                (6, 7, 1.0 + 1.0j),
                (0, 2, 0.0),
                (1, 3, 0.0),
                (4, 6, 0.0),
                (5, 7, 0.0),
                (0, 4, -2.0 - 2.0j),
                (1, 5, -2.0 - 2.0j),
                (2, 6, -2.0 - 2.0j),
                (3, 7, -2.0 - 2.0j),
                (0, 0, 5.0),
                (1, 1, 5.0),
                (2, 2, 5.0),
                (3, 3, 5.0),
                (4, 4, 5.0),
                (5, 5, 5.0),
                (6, 6, 5.0),
                (7, 7, 5.0),
            }
            self.assertSetEqual(set(hyper_cubic.weighted_edge_list),
                                target_set)

        with self.subTest("Check the adjacency matrix."):
            target_matrix = np.array([
                [5.0, 1.0 + 1.0j, 0.0, 0.0, -2.0 - 2.0j, 0.0, 0.0, 0.0],
                [1.0 - 1.0j, 5.0, 0.0, 0.0, 0.0, -2.0 - 2.0j, 0.0, 0.0],
                [0.0, 0.0, 5.0, 1.0 + 1.0j, 0.0, 0.0, -2.0 - 2.0j, 0.0],
                [0.0, 0.0, 1.0 - 1.0j, 5.0, 0.0, 0.0, 0.0, -2.0 - 2.0j],
                [-2.0 + 2.0j, 0.0, 0.0, 0.0, 5.0, 1.0 + 1.0j, 0.0, 0.0],
                [0.0, -2.0 + 2.0j, 0.0, 0.0, 1.0 - 1.0j, 5.0, 0.0, 0.0],
                [0.0, 0.0, -2.0 + 2.0j, 0.0, 0.0, 0.0, 5.0, 1.0 + 1.0j],
                [0.0, 0.0, 0.0, -2.0 + 2.0j, 0.0, 0.0, 1.0 - 1.0j, 5.0],
            ])

            assert_array_equal(hyper_cubic.to_adjacency_matrix(weighted=True),
                               target_matrix)
    def __init__(
        self,
        size: Tuple[int, ...],
        edge_parameter: Union[complex, Tuple[complex, ...]] = 1.0,
        onsite_parameter: complex = 0.0,
        boundary_condition: Union[
            BoundaryCondition, Tuple[BoundaryCondition, ...]
        ] = BoundaryCondition.OPEN,
    ) -> None:
        """
        Args:
            size: Lengths of each dimension.
            edge_parameter: Weights on the edges in each direction.
                When it is a single value, it is interpreted as a tuple of the same length as `size`
                consisting of the same values.
                Defaults to 1.0.
            onsite_parameter: Weight on the self-loops, which are edges connecting a node to itself.
                This is uniform over the lattice points.
                Defaults to 0.0.
            boundary_condition: Boundary condition for each dimension.
                The available boundary conditions are:
                BoundaryCondition.OPEN, BoundaryCondition.PERIODIC.
                When it is a single value, it is interpreted as a tuple of the same length as `size`
                consisting of the same values.
                Defaults to BoundaryCondition.OPEN.

        Raises:
            ValueError: When edge parameter or boundary condition is a tuple,
                the length of that is not the same as that of size.
        """

        self._dim = len(size)
        self._size = size

        # edge parameter
        if isinstance(edge_parameter, (int, float, complex)):
            edge_parameter = (edge_parameter,) * self._dim
        elif isinstance(edge_parameter, tuple):
            if len(edge_parameter) != self._dim:
                raise ValueError(
                    "size mismatch, "
                    f"`edge_parameter`: {len(edge_parameter)}, `size`: {self._dim}."
                    "The length of `edge_parameter` must be the same as that of size."
                )

        self._edge_parameter = edge_parameter

        self._onsite_parameter = onsite_parameter

        # boundary condition
        if isinstance(boundary_condition, BoundaryCondition):
            boundary_condition = (boundary_condition,) * self._dim
        elif isinstance(boundary_condition, tuple):
            if len(boundary_condition) != self._dim:
                raise ValueError(
                    "size mismatch, "
                    f"`boundary_condition`: {len(boundary_condition)}, `size`: {self._dim}."
                    "The length of `boundary_condition` must be the same as that of size."
                )

        self._boundary_condition = boundary_condition

        graph = PyGraph(multigraph=False)
        graph.add_nodes_from(range(np.prod(size)))

        # add edges excluding the boundary edges
        bulk_edge_list = self._bulk_edges()
        graph.add_edges_from(bulk_edge_list)

        # add self-loops.
        self_loop_list = self._self_loops()
        graph.add_edges_from(self_loop_list)

        # add edges that cross the boundaries
        boundary_edge_list = self._create_boundary_edges()
        graph.add_edges_from(boundary_edge_list)

        # a list of edges that depend on the boundary condition
        self._boundary_edges = [(edge[0], edge[1]) for edge in boundary_edge_list]

        super().__init__(graph)

        # default position for one and two-dimensional cases.
        self.pos = self._default_position()