def all_restaurants(): id_list = np.unique(reviews_df.business_id) data = [] for _id in id_list: _dict = {} _dict['id'] = _id _dict['name'] = np.unique(reviews_df[reviews_df.business_id == _id].name)[0] print _id reviews = get_reviews(_id) try: cat_score = get_business_score(reviews,_id) _dict['cat_score'] = cat_score data.append(_dict) except: pass return render_template("all_restaurants.html", title = "Yelp Review Categorization", data = data)
def index(): #bus_id = "vcNAWiLM4dR7D2nwwJ7nCA" #bus_id = "mVHrayjG3uZ_RLHkLj-AMg" #bus_id = "1qCuOcks5HRv67OHovAVpg" bus_id = "wJr6kSA5dchdgOdwH6dZ2w" res = get_reviews(bus_id) try: cat_score = get_business_score(res,bus_id) name = np.unique(reviews_df[reviews_df.business_id == bus_id].name)[0] print res return render_template("index.html", title = "Yelp Review Categorization", cat_score = cat_score, res = res, name = name) except Exception as e: print e print "nan",res return render_template("index.html", title = "Yelp Review Categorization", cat_score = {}, res = [], name = " ")
import numpy as np import pandas as pd from JsonToDF import get_data from review import reviews_df from review.review_score import get_reviews from business import get_business_score import pickle count = 1000 df = get_data(count) print df.shape id_list = np.unique(reviews_df.business_id) data = [] for _id in id_list: _dict = {} _dict['id'] = _id _dict['name'] = np.unique(reviews_df[reviews_df.business_id == _id].name)[0] print _id reviews = get_reviews(_id) try: cat_score = get_business_score(reviews,_id) _dict['cat_score'] = cat_score data.append(_dict) except: pass pickle.dump(data,open('data.p','w'))