示例#1
0
    def fi_vals(self, fnames_as_columns=True):
        """ Computes the sample-wide RFI for each run

        Returns:
            pd.DataFrame with index: sample and fsoi as columns
        """
        # self._check_shape()
        # arr = np.mean(self.scores, axis=(2))
        # if return_np:
        #     return arr
        # else:
        #     runs = range(arr.shape[1])
        #     index = utils.create_multiindex(['feature', 'run'],
        #                                     [self.fsoi_names, runs])
        #     arr = arr.reshape(-1)
        #     df = pd.DataFrame(arr, index=index, columns=['importance'])
        # return df
        df = self.scores.mean(level='sample')
        if fnames_as_columns:
            return df
        else:
            index = utils.create_multiindex([df.index.name, 'feature'],
                                            [df.index.values, df.columns])
            df2 = pd.DataFrame(df.to_numpy().reshape(-1),
                               index=index,
                               columns=['importance'])
            return df2
示例#2
0
文件: sampler.py 项目: gcskoenig/rfi
    def sample(self, X_test, J, G, num_samples=1):
        """Sample features of interest using trained resampler.

        Args:
            J: Set of features to sample
            G: relative feature set
            X_test: DataFrame for which sampling shall be performed
            num_samples: number of resamples without
                retraining shall be computed

        Returns:
            Resampled data for the features of interest.
            pd.DataFrame with multiindex ('sample', 'i')
            and resampled features as columns
        """
        # initialize numpy matrix
        # sampled_data = np.zeros((X_test.shape[0], num_samples, J.shape[0]))

        # sample
        G_key, J_key = Sampler._to_key(G), Sampler._to_key(J)

        if not self.is_trained(J, G):
            raise RuntimeError("Sampler not trained on {} | {}".format(J, G))
        else:
            sample_func = self._trained_sampling_funcs[(J_key, G_key)]
            smpl = sample_func(X_test[Sampler._order_fset(G)].to_numpy(),
                               num_samples=num_samples)
            snrs = np.arange(num_samples)
            obs = np.arange(X_test.shape[0])
            vss = [snrs, obs]
            ns = ['sample', 'i']
            index = utils.create_multiindex(ns, vss)

            smpl = np.swapaxes(smpl, 0, 1)
            smpl = smpl.reshape((-1, smpl.shape[2]))

            df = pd.DataFrame(smpl, index=index,
                              columns=Sampler._order_fset(J))
            return df
示例#3
0
    def tdi(self,
            X_eval,
            y_eval,
            G,
            D=None,
            sampler=None,
            loss=None,
            nr_runs=10,
            return_perturbed=False,
            train_allowed=True):
        """Computes Relative Feature importance

        # TODO(gcsk): allow handing a sample as argument
        #             (without needing sampler)

        Args:
            X_eval: data to use for resampling and evaluation.
            y_eval: labels for evaluation.
            G: relative feature set
            D: features, used by the predictive model
            sampler: choice of sampler. Default None. Will throw an error
              when sampler is None and self.sampler is None as well.
            loss: choice of loss. Default None. Will throw an Error when
              both loss and self.loss are None.
            nr_runs: how often the experiment shall be run
            return_perturbed: whether the sampled perturbed versions
                shall be returned
            train_allowed: whether the explainer is allowed to train
                the sampler

        Returns:
            result: An explanation object with the RFI computation
            perturbed_foiss (optional): perturbed features of
                interest if return_perturbed
        """

        if sampler is None:
            if self._sampler_specified():
                sampler = self.sampler
                logger.debug("Using class specified sampler.")

        if loss is None:
            if self._loss_specified():
                loss = self.loss
                logger.debug("Using class specified loss.")

        if D is None:
            D = X_eval.columns

        # check whether the sampler is trained for each fsoi conditional on G
        for f in self.fsoi:
            if not sampler.is_trained([f], G):
                # train if allowed, otherwise raise error
                if train_allowed:
                    sampler.train([f], G)
                    logger.info('Training sampler on {}|{}'.format([f], G))
                else:
                    raise RuntimeError(
                        'Sampler is not trained on {}|{}'.format([f], G))
            else:
                txt = '\tCheck passed: Sampler is already trained on'
                txt = txt + '{}|{}'.format([f], G)
                logger.debug(txt)

        # initialize array for the perturbed samples
        nr_obs = X_eval.shape[0]
        index = utils.create_multiindex(
            ['sample', 'i'],
            [np.arange(nr_runs), np.arange(nr_obs)])
        X_fsoi_pert = pd.DataFrame([], index=index)
        # perturbed_foiss = np.zeros((nr_fsoi, nr_runs, nr_obs))

        # sample perturbed versions
        for foi in self.fsoi:
            x_foi_pert = sampler.sample(X_eval, [foi], G, num_samples=nr_runs)
            X_fsoi_pert[foi] = x_foi_pert

        scores = pd.DataFrame([], index=index)
        # lss = np.zeros((nr_fsoi, nr_runs, X_eval.shape[0]))

        # compute observasitonwise loss differences for all runs and fois
        for foi in self.fsoi:
            # copy of the data where perturbed variables are copied into
            for kk in np.arange(0, nr_runs, 1):
                # replaced with perturbed
                X_eval_tilde = X_eval.copy()
                arr = X_fsoi_pert.loc[(kk, slice(None)), foi].to_numpy()
                X_eval_tilde[foi] = arr
                # X_eval_one_perturbed[:, self.fsoi[jj]]
                # = perturbed_foiss[jj, kk, :]
                # using only seen while training features

                # make sure model can handle it (selection and ordering)
                X_eval_tilde_model = X_eval_tilde[D]
                # X_eval_one_perturbed_model = X_eval_one_perturbed[:, D]
                X_eval_model = X_eval[D]

                # compute difference in observationwise loss
                loss_pert = loss(y_eval, self.model(X_eval_tilde_model))
                loss_orig = loss(y_eval, self.model(X_eval_model))
                diffs = (loss_pert - loss_orig)
                scores.loc[(kk, slice(None)), foi] = diffs
                # lss[jj, kk, :] = loss_pert - loss_orig

        # return explanation object
        ex_name = 'RFI^{}'.format(G)
        result = explanation.Explanation(self.fsoi, scores, ex_name=ex_name)

        if return_perturbed:
            logger.debug('Return both explanation and perturbed.')
            return result, X_fsoi_pert
        else:
            logger.debug('Return explanation object only')
            return result
示例#4
0
    def sage(self,
             X_test,
             y_test,
             fixed_orderings=None,
             partial_ordering=None,
             nr_orderings=None,
             approx=math.sqrt,
             type='rfi',
             save_orderings=True,
             nr_runs=10,
             sampler=None,
             loss=None,
             train_allowed=True,
             D=None,
             return_test_log_lik=False,
             nr_resample_marginalize=10):
        """
        Compute Shapley Additive Global Importance values.
        Args:
            type: either 'rfi' or 'rfa', depending on whether conditional
                or marginal resampling of the remaining features shall
                be used
            X_test: data to use for resampling and evaluation.
            y_test: labels for evaluation.
            fixed_orderings: list of ready orderings
            nr_orderings: number of orderings in which features enter the model
            nr_runs: how often each value function shall be computed
            sampler: choice of sampler. Default None. Will throw an error
              when sampler is None and self.sampler is None as well.
            loss: choice of loss. Default None. Will throw an Error when
              both loss and self.loss are None.
            train_allowed: whether the explainer is allowed to
                train the sampler
            return_test_log_lik: return log-likelihood of conditional sampler on X_test

        Returns:
            result: an explanation object containing the respective
                pairwise lossdifferences with shape
                (nr_fsoi, nr_runs, nr_obs, nr_orderings)
            orderings (optional): an array containing the respective
                orderings if return_orderings
        """
        # the method is currently not build for situations
        # where we are only interested in
        # a subset of the model's features
        if X_test.shape[1] != len(self.fsoi):
            logger.debug('self.fsoi: {}'.format(self.fsoi))
            logger.debug('#features in model: {}'.format(X_test.shape[1]))
            raise RuntimeError('self.fsoi is not identical to all features')

        if sampler is None:
            if self._sampler_specified():
                sampler = self.sampler
                logger.debug("Using class specified sampler.")

        if loss is None:
            if self._loss_specified():
                loss = self.loss
                logger.debug("Using class specified loss.")

        if fixed_orderings is not None:
            fixed_orderings = np.array(fixed_orderings)
            nr_orderings = len(fixed_orderings)

        if nr_orderings is None:
            nr_unique = utils.nr_unique_perm(partial_ordering)
            if approx is not None:
                nr_orderings = math.floor(approx(nr_unique))
            else:
                nr_orderings = nr_unique

        if D is None:
            D = X_test.columns

        nr_orderings_saved = 1
        if save_orderings:
            nr_orderings_saved = nr_orderings

        # create dataframe for computation results
        index = utils.create_multiindex(['ordering', 'sample', 'id'], [
            np.arange(nr_orderings_saved),
            np.arange(nr_runs),
            np.arange(X_test.shape[0])
        ])
        arr = np.zeros(
            (nr_orderings_saved * nr_runs * X_test.shape[0], len(self.fsoi)))
        scores = pd.DataFrame(arr, index=index, columns=self.fsoi)
        test_log_lik = []

        for ii in range(nr_orderings):
            if fixed_orderings is None:
                ordering = utils.sample_partial(partial_ordering)
            else:
                ordering = fixed_orderings[ii]
            logging.info('Ordering : {}'.format(ordering))

            # ordering = np.random.permutation(len(self.fsoi))
            # resample multiple times
            for kk in range(nr_runs):
                # enter one feature at a time
                y_hat_base = np.repeat(np.mean(self.model(X_test[D])),
                                       X_test.shape[0])
                for jj in np.arange(1, len(ordering), 1):
                    # compute change in performance
                    # by entering the respective feature
                    # store the result in the right place
                    # validate training of sampler
                    impute, fixed = ordering[jj:], ordering[:jj]
                    logger.info(
                        'ordering {}: run {}: split {}: impute, fixed: {} | {}'
                        .format(ii, kk, jj, impute, fixed))

                    if not sampler.is_trained(impute, fixed):
                        # train if allowed, otherwise raise error
                        if train_allowed:
                            estimator = sampler.train(impute, fixed)

                            # Evaluating test log-likelihood for diagnostics
                            test_inputs = X_test[sampler._order_fset(
                                impute)].to_numpy()
                            test_context = X_test[sampler._order_fset(
                                fixed)].to_numpy()
                            log_lik = estimator.log_prob(
                                inputs=test_inputs,
                                context=test_context).mean()
                            logger.info(f'Test log-likelihood: {log_lik}')
                            test_log_lik.append(log_lik)
                        else:
                            raise RuntimeError('Sampler is not trained on '
                                               '{}|{}'.format(impute, fixed))
                    X_test_perturbed = X_test.copy()

                    # iterate values nr_samples_marginalize times
                    i_ix = X_test_perturbed.index.values
                    rn_ix = np.arange(nr_resample_marginalize)
                    index = utils.create_multiindex(['sample', 'id'],
                                                    [rn_ix, i_ix])
                    tiling = np.tile(np.arange(len(X_test_perturbed)),
                                     nr_resample_marginalize)
                    vals = X_test_perturbed.iloc[tiling].to_numpy()
                    cols = X_test_perturbed.columns
                    X_test_perturbed = pd.DataFrame(vals,
                                                    index=index,
                                                    columns=cols)
                    imps = sampler.sample(X_test,
                                          impute,
                                          fixed,
                                          num_samples=nr_resample_marginalize)

                    X_test_perturbed[impute] = imps[impute].to_numpy()

                    # sample replacement, create replacement matrix
                    y_hat_new = self.model(X_test_perturbed[D])

                    # mean over samples
                    df_y_hat_new = pd.DataFrame(y_hat_new,
                                                index=index,
                                                columns=['y_hat_new'])
                    y_hat_new_marg = df_y_hat_new.mean(level='id')

                    lb = loss(y_test, y_hat_base)
                    ln = loss(y_test, y_hat_new_marg)
                    diff = lb - ln
                    scores.loc[(ii, kk, slice(None)), ordering[jj - 1]] = diff
                    # lss[self.fsoi[ordering[jj - 1]], kk, :, ii] = lb - ln
                    y_hat_base = y_hat_new_marg

                y_hat_new = self.model(X_test[D])
                diff = loss(y_test, y_hat_base) - loss(y_test, y_hat_new)
                scores.loc[(ii, kk, slice(None)), ordering[-1]] = diff
                # lss[self.fsoi[ordering[-1]], kk, :, ii] = diff

        result = explanation.Explanation(self.fsoi, scores, ex_name='SAGE')

        if return_test_log_lik:
            return result, test_log_lik

        return result
示例#5
0
    def decomposition(self,
                      imp_type,
                      fsoi,
                      partial_ordering,
                      X_eval,
                      y_eval,
                      nr_orderings=None,
                      nr_runs=3,
                      show_pbar=True,
                      approx=math.sqrt,
                      save_orderings=True,
                      **kwargs):
        """
        Given a partial ordering, this code allows to decompose
        feature importance or feature association for a given set of
        features into its respective indirect or direct components.

        Args:
            imp_type: Either 'rfi' or 'rfa'
            fois: features, for which the importance scores (of type imp_type)
                are to be decomposed
            partial_ordering: partial ordering for the decomposition
            X_test: test data
            y_test: test labels
            nr_orderings: number of total orderings to sample
                (given the partial) ordering
            nr_runs: number of runs for each feature importance score
                computation

        Returns:
            means, stds: means and standard deviations for each
                component and each feature. numpy.array with shape
                (#components, #fsoi)
        """
        if nr_orderings is None:
            nr_unique = utils.nr_unique_perm(partial_ordering)
            if approx is not None:
                nr_orderings = math.floor(approx(nr_unique))
            else:
                nr_orderings = nr_unique

        logger.info('#orderings: {}'.format(nr_orderings))

        explnr_fnc = None
        if imp_type == 'tdi':
            explnr_fnc = self.tdi
        elif imp_type == 'tai':
            explnr_fnc = self.tai
        else:
            raise ValueError('Importance type '
                             '{} not implemented'.format(imp_type))

        # values (nr_perm, nr_runs, nr_components, nr_fsoi)
        # components are: (elements of ordering,..., remainder)
        # elements of ordering are sorted in increasing order

        component_names = np.unique(utils.flatten(partial_ordering))
        component_names = list(component_names)
        component_names.insert(0, 'remainder')
        component_names.insert(0, 'total')
        nr_components = len(component_names)

        nr_orderings_saved = 1
        if save_orderings:
            nr_orderings_saved = nr_orderings

        def rescale_fi_vals(fi_vals_old, fi_vals, component, ordering_nr):
            '''
            Necessary to compute the running mean when not saving
            every ordering.
            Assuming fi_vals are np.array, ordering_nr
            run number in range(0, nr_orderings)
            df the decomposition dataframe
            '''
            fi_vals_old_scaled = fi_vals_old * (ordering - 1) / ordering
            fi_vals_scaled = fi_vals / ordering
            fi_vals_new = fi_vals_old_scaled + fi_vals_scaled
            return fi_vals_new

        # create dataframe for computation results
        index = utils.create_multiindex(['component', 'ordering', 'sample'], [
            component_names,
            np.arange(nr_orderings_saved),
            np.arange(nr_runs)
        ])
        arr = np.zeros(
            (nr_components * nr_orderings_saved * nr_runs, len(self.fsoi)))
        decomposition = pd.DataFrame(arr, index=index, columns=self.fsoi)
        # values = np.zeros((nr_orderings, nr_runs, nr_components, len(fsoi)))

        if show_pbar:
            mgr = enlighten.get_manager()
            pbar = mgr.counter(total=nr_orderings,
                               desc='decomposition',
                               unit='orderings')

        for kk in np.arange(nr_orderings):
            if show_pbar:
                pbar.update()

            ordering = utils.sample_partial(partial_ordering)
            logging.info('Ordering : {}'.format(ordering))

            # total values
            expl = explnr_fnc(X_eval, y_eval, [], nr_runs=nr_runs, **kwargs)
            fi_vals = expl.fi_vals().to_numpy()

            # store total values
            if save_orderings:
                decomposition.loc['total', kk, :] = fi_vals
            else:
                fi_old = decomposition.loc['total', 0, :].to_numpy()
                fi_vals = rescale_fi_vals(fi_old, fi_vals, 'total', kk)
                decomposition.loc['total', 0, :] = fi_vals

            previous = fi_vals
            current = None

            for jj in np.arange(1, len(ordering) + 1):
                # get current new variable and respective set
                current_ix = ordering[jj - 1]
                G = ordering[:jj]

                # compute and store feature importance
                expl = explnr_fnc(X_eval, y_eval, G, nr_runs=nr_runs, **kwargs)
                current = expl.fi_vals().to_numpy()

                # compute difference
                fi_vals = previous - current

                # store result
                if save_orderings:
                    decomposition.loc[current_ix, kk, :] = fi_vals
                else:
                    fi_old = decomposition.loc[current_ix, 0, :].to_numpy()
                    fi_vals = rescale_fi_vals(fi_old, fi_vals, current_ix, kk)
                    decomposition.loc[current_ix, 0, :] = fi_vals

                previous = current

            # store remainder
            if save_orderings:
                decomposition.loc['remainder', kk, :] = current
            else:
                fi_old = decomposition.loc['remainder', 0, :].to_numpy()
                fi_vals = rescale_fi_vals(fi_old, current, 'remainder', kk)
                decomposition.loc['remainder', 0, :] = fi_vals

        ex = decomposition_ex.DecompositionExplanation(self.fsoi,
                                                       decomposition,
                                                       ex_name=None)
        return ex
示例#6
0
    def tai(self,
            X_eval,
            y_eval,
            K,
            D=None,
            sampler=None,
            decorrelator=None,
            loss=None,
            nr_runs=10,
            return_perturbed=False,
            train_allowed=True,
            ex_name=None):
        """Computes Feature Association

        Args:
            X_eval: data to use for resampling and evaluation.
            y_eval: labels for evaluation.
            K: features not to be reconstracted
            D: model features (including their required ordering)
            sampler: choice of sampler. Default None. Will throw an error
              when sampler is None and self.sampler is None as well.
            loss: choice of loss. Default None. Will throw an Error when
              both loss and self.loss are None.
            nr_runs: how often the experiment shall be run
            return_perturbed: whether the sampled perturbed
                versions shall be returned
            train_allowed: whether the explainer is allowed
                to train the sampler

        Returns:
            result: An explanation object with the RFI computation
            perturbed_foiss (optional): perturbed features of
                interest if return_perturbed
        """

        if sampler is None:
            if self._sampler_specified():  # may throw an error
                sampler = self.sampler
                logger.debug("Using class specified sampler.")

        if decorrelator is None:
            if self._decorrelator_specified():  # may throw error
                decorrelator = self.decorrelator
                logger.debug("Using class specified decorrelator")

        if loss is None:
            if self._loss_specified():  # may throw an error
                loss = self.loss
                logger.debug("Using class specified loss.")

        if D is None:
            D = X_eval.columns
        # all_fs = np.arange(X_test.shape[1])

        # check whether the sampler is trained for the baseline perturbation
        if not sampler.is_trained(D, []):
            # train if allowed, otherwise raise error
            if train_allowed:
                sampler.train(D, [])
                logger.info('Training sampler on {}|{}'.format(D, []))
            else:
                raise RuntimeError('Sampler is not trained on {}|{}'.format(
                    D, []))
        else:
            txt = '\tCheck passed: Sampler is already trained on '
            txt = txt + '{}|{}'.format(D, [])
            logger.debug(txt)

        # check for each of the features of interest
        for foi in self.fsoi:
            if not sampler.is_trained(D, [foi]):
                # train if allowed, otherwise raise error
                if train_allowed:
                    sampler.train(D, [foi])
                    logger.info('Training sampler on {}|{}'.format(D, [foi]))
                else:
                    raise RuntimeError(
                        'Sampler is not trained on {}|{}'.format(D, [foi]))
            else:
                txt = '\tCheck passed: Sampler is already trained on '
                txt = txt + '{}|{}'.format(D, [foi])
                logger.debug(txt)

        # check whether decorrelators have been trained
        for foi in self.fsoi:
            if not decorrelator.is_trained(K, [foi], []):
                if train_allowed:
                    decorrelator.train(K, [foi], [])
                    txt = 'Training decorrelator on '
                    txt = txt + '{} idp {} | {}'.format(K, [foi], [])
                    logger.info(txt)
                else:
                    txt = 'Decorrelator is not trained on '
                    txt = txt + '{} {} | {}'.format(K, [foi], [])
                    raise RuntimeError(txt)
            else:
                logger.debug('\tCheck passed: '
                             'Decorrelator is already trained on '
                             '{} {} | {}'.format(K, [foi], []))

        # initialize array for the perturbed samples
        nr_obs = X_eval.shape[0]

        # initialize pandas dataframes for X_eval_tilde baseline
        # and X_eval_tilde reconstrcted
        index_bsln = utils.create_multiindex(
            ['sample', 'i'],
            [np.arange(nr_runs), np.arange(nr_obs)])
        X_eval_tilde_bsln = pd.DataFrame([], index=index_bsln, columns=D)
        index_rcnstr = utils.create_multiindex(
            ['foi', 'sample', 'i'],
            [self.fsoi, np.arange(nr_runs),
             np.arange(nr_obs)])
        X_eval_tilde_rcnstr = pd.DataFrame([], index=index_rcnstr, columns=D)

        # sample baseline X^\emptyset
        X_eval_tilde_bsln = sampler.sample(X_eval, D, [], num_samples=nr_runs)

        # sample perturbed versions
        for foi in self.fsoi:
            # X^foi
            sample = sampler.sample(X_eval, D, [foi], num_samples=nr_runs)
            for kk in np.arange(nr_runs):
                # X^\emptyset,linked
                sample_decorr = decorrelator.decorrelate(
                    sample.loc[kk, :], K, [foi], [])
                sd_np = sample_decorr[D].to_numpy()
                X_eval_tilde_rcnstr.loc[(foi, kk, slice(None)), D] = sd_np

        # create empty scores data frame
        index_scores = utils.create_multiindex(
            ['sample', 'i'],
            [np.arange(nr_runs), np.arange(nr_obs)])
        scores = pd.DataFrame([], index=index_scores)

        # compute observasitonwise loss differences for all runs and fois
        for kk in np.arange(nr_runs):
            X_bl = X_eval_tilde_bsln.loc[(kk, slice(None)), D]
            l_pb = loss(y_eval, self.model(X_bl))
            for foi in self.fsoi:
                X_rc = X_eval_tilde_rcnstr.loc[(foi, kk, slice(None)), D]
                l_rc = loss(y_eval, self.model(X_rc))
                scores.loc[(kk, slice(None)), foi] = l_pb - l_rc

        if ex_name is None:
            ex_name = 'Unknown tai'

        # return explanation object
        result = explanation.Explanation(self.fsoi, scores, ex_name=ex_name)
        if return_perturbed:
            raise NotImplementedError(
                'Returning perturbed not implemented yet.')
        else:
            logger.debug('Return explanation object only')
            return result
示例#7
0
    def tdi_from(self,
                 K,
                 B,
                 J,
                 X_eval,
                 y_eval,
                 D=None,
                 sampler=None,
                 decorrelator=None,
                 loss=None,
                 nr_runs=10,
                 return_perturbed=False,
                 train_allowed=True,
                 target='Y',
                 marginalize=False):
        """Computes Relative Feature importance

        Args:
            K: features of interest
            B: baseline features
            J: "from" conditioning set
            X_eval: data to use for resampling and evaluation.
            y_eval: labels for evaluation.
            D: features, used by the predictive model
            sampler: choice of sampler. Default None. Will throw an error
              when sampler is None and self.sampler is None as well.
            loss: choice of loss. Default None. Will throw an Error when
              both loss and self.loss are None.
            nr_runs: how often the experiment shall be run
            return_perturbed: whether the sampled perturbed versions
                shall be returned
            train_allowed: whether the explainer is allowed to train
                the sampler

        Returns:
            result: An explanation object with the RFI computation
            perturbed_foiss (optional): perturbed features of
                interest if return_perturbed
        """
        if target not in ['Y', 'Y_hat']:
            raise ValueError('Y and Y_hat are the only valid targets.')

        if marginalize:
            raise NotImplementedError('Marginalization not implemented yet.')

        if sampler is None:
            if self._sampler_specified():
                sampler = self.sampler
                logger.debug("Using class specified sampler.")

        if decorrelator is None:
            if self._decorrelator_specified():
                decorrelator = self.decorrelator
                logger.debug("Using class specified decorrelator.")

        if loss is None:
            if self._loss_specified():
                loss = self.loss
                logger.debug("Using class specified loss.")

        if D is None:
            D = X_eval.columns

        if not set(K).isdisjoint(set(B)):
            raise ValueError('K and B are not disjoint.')

        # check whether sampler is trained for baseline dropped features
        R = list(set(D) - set(B))
        if not sampler.is_trained(R, J):
            # train if allowed, otherwise raise error
            if train_allowed:
                sampler.train(R, J)
                logger.info('Training sampler on {}|{}'.format(R, J))
            else:
                raise RuntimeError('Sampler is not trained on {}|{}'.format(
                    R, J))
        else:
            txt = '\tCheck passed: Sampler is already trained on'
            txt = txt + '{}|{}'.format(R, J)
            logger.debug(txt)

        if not decorrelator.is_trained(R, J, []):
            # train if allowed, otherwise raise error
            if train_allowed:
                decorrelator.train(R, J, [])
                logger.info('Training decorrelator on {} idp {} |{}'.format(
                    R, J, []))
            else:
                raise RuntimeError(
                    'Sampler is not trained on {} idp {} |{}'.format(R, J, []))
        else:
            txt = '\tCheck passed: decorrelator is already trained on'
            txt = txt + '{} idp {}|{}'.format(R, J, [])
            logger.debug(txt)

        desc = 'TDI({} | {} <- {})'.format(K, B, J)

        # initialize array for the perturbed samples
        nr_obs = X_eval.shape[0]
        index = utils.create_multiindex(
            ['sample', 'i'],
            [np.arange(nr_runs), np.arange(nr_obs)])
        # X_fsoi_pert = pd.DataFrame([], index=index)
        # perturbed_foiss = np.zeros((nr_fsoi, nr_runs, nr_obs))

        # sample perturbed versions
        X_R_J = sampler.sample(X_eval, R, J, num_samples=nr_runs)

        breakpoint()

        scores = pd.DataFrame([], index=index)
        # lss = np.zeros((nr_fsoi, nr_runs, X_eval.shape[0]))

        for kk in np.arange(0, nr_runs, 1):
            # replaced with perturbed
            X_tilde_baseline = X_eval.copy()
            X_tilde_foreground = X_eval.copy()

            X_R_empty_linked = decorrelator.decorrelate(
                X_R_J.loc[kk, :], R, J, [])

            arr = X_R_empty_linked[R].to_numpy()
            X_tilde_baseline[R] = arr
            X_tilde_foreground[R] = arr
            X_tilde_foreground[K] = X_R_J.loc[(kk, slice(None)), J].to_numpy()

            # make sure model can handle it (selection and ordering)
            X_tilde_baseline = X_tilde_baseline[D]
            X_tilde_foreground = X_tilde_foreground[D]

            # compute difference in observationwise loss
            if target == 'Y':
                loss_baseline = loss(y_eval, self.model(X_tilde_baseline))
                loss_foreground = loss(y_eval, self.model(X_tilde_foreground))
                diffs = (loss_baseline - loss_foreground)
                scores.loc[(kk, slice(None)), 'score'] = diffs
            else:
                raise NotImplementedError('Y_hat not implemented yet.')
            # lss[jj, kk, :] = loss_pert - loss_orig

        # return explanation object
        ex_name = desc
        result = explanation.Explanation(self.fsoi, scores, ex_name=ex_name)

        if return_perturbed:
            raise NotImplementedError('return_perturbed=True not implemented.')
        else:
            logger.debug('Return explanation object only')
            return result
    def decomposition(self,
                      imp_type,
                      fsoi,
                      partial_ordering,
                      X_eval,
                      y_eval,
                      nr_orderings=None,
                      nr_orderings_sage=None,
                      nr_runs=3,
                      show_pbar=True,
                      approx=math.sqrt,
                      save_orderings=True,
                      sage_partial_ordering=None,
                      orderings=None,
                      target='Y',
                      **kwargs):
        """
        Given a partial ordering, this code allows to decompose
        feature importance or feature association for a given set of
        features into its respective indirect or direct components.

        Args:
            imp_type: Either 'rfi' or 'rfa'
            fois: features, for which the importance scores (of type imp_type)
                are to be decomposed
            partial_ordering: partial ordering for the decomposition
            X_test: test data
            y_test: test labels
            nr_orderings: number of total orderings to sample
                (given the partial) ordering
            nr_runs: number of runs for each feature importance score
                computation

        Returns:
            means, stds: means and standard deviations for each
                component and each feature. numpy.array with shape
                (#components, #fsoi)
        """
        if orderings is None:
            if nr_orderings is None:
                nr_unique = utils.nr_unique_perm(partial_ordering)
                if approx is not None:
                    nr_orderings = math.floor(approx(nr_unique))
                else:
                    nr_orderings = nr_unique
        else:
            nr_orderings = orderings.shape[0]

        logger.info('#orderings: {}'.format(nr_orderings))

        if imp_type not in ['tdi', 'tai', 'sage']:
            raise ValueError('Only tdi, tai and sage '
                             'implemented for imp_type.')

        if imp_type == 'sage' and sage_partial_ordering is None:
            raise ValueError('Please specify a sage ordering.')

        if target not in ['Y', 'Y_hat']:
            raise ValueError('Only Y and Y_hat implemented as target.')

        if nr_orderings_sage is None:
            nr_orderings_sage = nr_orderings

        # values (nr_perm, nr_runs, nr_components, nr_fsoi)
        # components are: (elements of ordering,..., remainder)
        # elements of ordering are sorted in increasing order

        component_names = np.unique(utils.flatten(partial_ordering))
        component_names = list(component_names)
        component_names.insert(0, 'remainder')
        component_names.insert(0, 'total')
        nr_components = len(component_names)

        nr_orderings_saved = 1
        if save_orderings:
            nr_orderings_saved = nr_orderings

        def rescale_fi_vals(fi_vals_old, fi_vals, component, ordering_nr):
            '''
            Necessary to compute the running mean when not saving
            every ordering.
            Assuming fi_vals are np.array, ordering_nr
            run number in range(0, nr_orderings)
            df the decomposition dataframe
            '''
            fi_vals_old_scaled = fi_vals_old * (ordering - 1) / ordering
            fi_vals_scaled = fi_vals / ordering
            fi_vals_new = fi_vals_old_scaled + fi_vals_scaled
            return fi_vals_new

        # create dataframe for computation results
        index = utils.create_multiindex(['component', 'ordering', 'sample'], [
            component_names,
            np.arange(nr_orderings_saved),
            np.arange(nr_runs)
        ])
        arr = np.zeros(
            (nr_components * nr_orderings_saved * nr_runs, len(self.fsoi)))
        decomposition = pd.DataFrame(arr, index=index, columns=self.fsoi)
        # values = np.zeros((nr_orderings, nr_runs, nr_components, len(fsoi)))
        orderings_sampled = pd.DataFrame(index=np.arange(nr_orderings),
                                         columns=['ordering'])

        # in the first sage call an ordering object is returned
        # that is then fed to sage again
        # to ensure that always the same orderings are used
        # for the computation
        # allow a more reliable approximation
        sage_orderings = None

        if show_pbar:
            mgr = enlighten.get_manager()
            pbar = mgr.counter(total=nr_orderings,
                               desc='decomposition',
                               unit='orderings')

        # ordering history helps to avoid duplicate orderings
        ord_hist = None
        for kk in np.arange(nr_orderings):
            if show_pbar:
                pbar.update()

            ordering = None
            if orderings is None:
                ordering, ord_hist = utils.sample_partial(
                    partial_ordering, ord_hist)
                logging.info('Ordering : {}'.format(ordering))
                orderings_sampled.loc[kk, 'ordering'] = ordering
            else:
                ordering = orderings.loc[kk, 'ordering']

            # total values
            expl = None
            if imp_type == 'tdi':
                expl = self.tdi(X_eval, y_eval, [], nr_runs=nr_runs, **kwargs)
            elif imp_type == 'tai':
                expl = self.tai(X_eval, y_eval, [], nr_runs=nr_runs, **kwargs)
            elif imp_type == 'sage':
                tupl = self.sage(X_eval,
                                 y_eval,
                                 partial_ordering,
                                 nr_orderings=nr_orderings_sage,
                                 nr_runs=nr_runs,
                                 target=target,
                                 G=X_eval.columns,
                                 orderings=sage_orderings,
                                 **kwargs)
                expl, sage_orderings = tupl
            fi_vals = expl.fi_vals().to_numpy()

            # store total values
            if save_orderings:
                decomposition.loc['total', kk, :] = fi_vals
            else:
                fi_old = decomposition.loc['total', 0, :].to_numpy()
                fi_vals = rescale_fi_vals(fi_old, fi_vals, 'total', kk)
                decomposition.loc['total', 0, :] = fi_vals

            previous = fi_vals
            current = None

            for jj in np.arange(1, len(ordering) + 1):
                # get current new variable and respective set
                current_ix = ordering[jj - 1]
                G = ordering[:jj]

                # compute and store feature importance
                expl = None
                if imp_type == 'tdi':
                    expl = self.tdi(X_eval,
                                    y_eval,
                                    G,
                                    nr_runs=nr_runs,
                                    **kwargs)
                elif imp_type == 'tai':
                    expl = self.tai(X_eval,
                                    y_eval,
                                    G,
                                    nr_runs=nr_runs,
                                    **kwargs)
                elif imp_type == 'sage':
                    G_ = list(set(X_eval.columns) - set(G))
                    tupl = self.sage(X_eval,
                                     y_eval,
                                     partial_ordering,
                                     nr_orderings=nr_orderings_sage,
                                     nr_runs=nr_runs,
                                     target=target,
                                     G=G_,
                                     orderings=sage_orderings,
                                     **kwargs)
                    expl, sage_orderings = tupl

                current = expl.fi_vals().to_numpy()

                fi_vals = None
                # compute difference
                fi_vals = previous - current

                # store result
                if save_orderings:
                    decomposition.loc[current_ix, kk, :] = fi_vals
                else:
                    fi_old = decomposition.loc[current_ix, 0, :].to_numpy()
                    fi_vals = rescale_fi_vals(fi_old, fi_vals, current_ix, kk)
                    decomposition.loc[current_ix, 0, :] = fi_vals

                previous = current

            # store remainder
            if save_orderings:
                decomposition.loc['remainder', kk, :] = current
            else:
                fi_old = decomposition.loc['remainder', 0, :].to_numpy()
                fi_vals = rescale_fi_vals(fi_old, current, 'remainder', kk)
                decomposition.loc['remainder', 0, :] = fi_vals

        if orderings is None:
            orderings = orderings_sampled
        ex = decomposition_ex.DecompositionExplanation(self.fsoi,
                                                       decomposition,
                                                       ex_name=None)
        return ex, orderings
    def viafrom(self,
                imp_type,
                fsoi,
                X_eval,
                y_eval,
                target='Y',
                nr_runs=10,
                show_pbar=True,
                components=None,
                **kwargs):
        """
        Either computs the pfi under only one variable being reconstructed for
        every feature (ar_via),
        or the component of the pfi of every feature from
        single variables (dr_from)
        """
        if imp_type not in ['ar_via', 'dr_from', 'sage']:
            raise ValueError('Only ar_via, sage and dr_from'
                             'implemented for imp_type.')

        if target not in ['Y', 'Y_hat']:
            raise ValueError('Only Y and Y_hat implemented as target.')

        # values (nr_perm, nr_runs, nr_components, nr_fsoi)
        # components are: (elements of ordering,..., remainder)
        # elements of ordering are sorted in increasing order

        if components is None:
            components = X_eval.columns
        components = list(components)
        components.append('total')
        nr_components = len(components)

        # create dataframe for computation results
        # orderings is just for compatibility with other decompositions
        index = utils.create_multiindex(
            ['component', 'ordering', 'sample'],
            [components, np.arange(1),
             np.arange(nr_runs)])
        arr = np.zeros((nr_components * nr_runs * 1, len(fsoi)))
        decomposition = pd.DataFrame(arr, index=index, columns=fsoi)

        if show_pbar:
            mgr = enlighten.get_manager()
            pbar = mgr.counter(total=nr_components * len(fsoi),
                               desc='naive_decomposition',
                               unit='{} runs'.format(imp_type))

        # helper funciton to compute the remainder
        def get_rmd(fs, f):
            rmd = list(set(fs).difference([f]))
            return rmd

        if imp_type == 'sage':
            expl, ordering = self.sage(X_eval, y_eval, [tuple(fsoi)], **kwargs)
            fi_vals_total = expl.fi_vals()[fsoi].to_numpy()
            decomposition.loc[idx['total', 0, :], fsoi] = fi_vals_total

            for component in get_rmd(components, 'total'):
                rmd = get_rmd(X_eval.columns, component)
                expl, ordering = self.sage(X_eval,
                                           y_eval, [tuple(fsoi)],
                                           G=rmd,
                                           **kwargs)
                fi_vals = expl.fi_vals()[fsoi].to_numpy()
                diff = fi_vals_total - fi_vals
                decomposition.loc[idx[component, 0, :], fsoi] = diff

            ex = decomposition_ex.DecompositionExplanation(self.fsoi,
                                                           decomposition,
                                                           ex_name=None)
            return ex

        # iterate over features
        for foi in fsoi:

            fi_vals_total = None
            if imp_type == 'ar_via':  # compute ar of foi over emptyset
                expl = self.ar_via([foi], [],
                                   X_eval.columns,
                                   X_eval,
                                   y_eval,
                                   nr_runs=nr_runs,
                                   target=target,
                                   **kwargs)
                fi_vals_total = expl.fi_vals().to_numpy()
            elif imp_type == 'dr_from':  # compute total PFI (over rmd)
                rmd = get_rmd(X_eval.columns, foi)
                expl = self.dr_from([foi],
                                    rmd,
                                    X_eval.columns,
                                    X_eval,
                                    y_eval,
                                    nr_runs=nr_runs,
                                    target=target,
                                    **kwargs)
                fi_vals_total = expl.fi_vals().to_numpy()
            decomposition.loc[idx['total', 0, :], foi] = fi_vals_total

            # iterate over components
            for component in get_rmd(components, 'total'):
                if show_pbar:
                    pbar.update()

                fi_vals = None
                if imp_type == 'ar_via':
                    rmd = get_rmd(X_eval.columns, component)
                    expl = self.ar_via([foi], [],
                                       rmd,
                                       X_eval,
                                       y_eval,
                                       nr_runs=nr_runs,
                                       target=target,
                                       **kwargs)
                    fi_vals = expl.fi_vals().to_numpy()
                    diff = fi_vals_total - fi_vals
                    decomposition.loc[idx[component, 0, :], foi] = diff
                elif imp_type == 'dr_from':
                    rmd = get_rmd(X_eval.columns, foi)
                    expl = self.dr_from([foi],
                                        rmd, [component],
                                        X_eval,
                                        y_eval,
                                        nr_runs=nr_runs,
                                        target=target,
                                        **kwargs)
                    fi_vals = expl.fi_vals().to_numpy()
                    decomposition.loc[idx[component, 0, :], foi] = fi_vals

        ex = decomposition_ex.DecompositionExplanation(self.fsoi,
                                                       decomposition,
                                                       ex_name=None)
        return ex
    def ar_via(self,
               J,
               C,
               K,
               X_eval,
               y_eval,
               D=None,
               sampler=None,
               decorrelator=None,
               loss=None,
               nr_runs=10,
               return_perturbed=False,
               train_allowed=True,
               target='Y',
               marginalize=False,
               nr_resample_marginalize=5):
        """Computes Relative Feature importance

        Args:
            K: features of interest
            B: baseline features
            J: "from" conditioning set
            X_eval: data to use for resampling and evaluation.
            y_eval: labels for evaluation.
            D: features, used by the predictive model
            sampler: choice of sampler. Default None. Will throw an error
              when sampler is None and self.sampler is None as well.
            loss: choice of loss. Default None. Will throw an Error when
              both loss and self.loss are None.
            nr_runs: how often the experiment shall be run
            return_perturbed: whether the sampled perturbed versions
                shall be returned
            train_allowed: whether the explainer is allowed to train
                the sampler

        Returns:
            result: An explanation object with the RFI computation
            perturbed_foiss (optional): perturbed features of
                interest if return_perturbed
        """
        if target not in ['Y', 'Y_hat']:
            raise ValueError('Y and Y_hat are the only valid targets.')

        # if marginalize:
        #     raise NotImplementedError('Marginalization not implemented yet.')

        if sampler is None:
            if self._sampler_specified():
                sampler = self.sampler
                logger.debug("Using class specified sampler.")

        if decorrelator is None:
            if self._decorrelator_specified():
                decorrelator = self.decorrelator
                logger.debug("Using class specified decorrelator.")

        if loss is None:
            if self._loss_specified():
                loss = self.loss
                logger.debug("Using class specified loss.")

        if D is None:
            D = X_eval.columns

        if not marginalize:
            nr_resample_marginalize = 1

        if not set(J).isdisjoint(set(C)):
            raise ValueError('J and C are not disjoint.')

        # check whether sampler is trained for baseline dropped features
        R = list(set(D) - set(C))
        R_ = list(set(R) - set(J))
        CuJ = list(set(C).union(J))
        if not sampler.is_trained(R_, CuJ):
            # train if allowed, otherwise raise error
            if train_allowed:
                sampler.train(R_, CuJ)
                logger.info('Training sampler on {}|{}'.format(R_, CuJ))
            else:
                raise RuntimeError('Sampler is not trained on {}|{}'.format(
                    R_, CuJ))
        else:
            txt = '\tCheck passed: Sampler is already trained on'
            txt = txt + '{}|{}'.format(R, J)
            logger.debug(txt)

        if not decorrelator.is_trained(K, J, C):
            # train if allowed, otherwise raise error
            if train_allowed:
                decorrelator.train(K, J, C)
                logger.info('Training decorrelator on {} idp {} |{}'.format(
                    K, J, C))
            else:
                raise RuntimeError(
                    'Sampler is not trained on {} idp {} |{}'.format(K, J, C))
        else:
            txt = '\tCheck passed: decorrelator is already trained on'
            txt = txt + '{} idp {}|{}'.format(K, J, C)
            logger.debug(txt)

        desc = 'AR({} | {} -> {})'.format(J, C, K)

        # initialize array for the perturbed samples
        nr_obs = X_eval.shape[0]
        index = utils.create_multiindex(
            ['sample', 'i'],
            [np.arange(nr_runs), np.arange(nr_obs)])

        scores = pd.DataFrame([], index=index)

        for kk in np.arange(0, nr_runs, 1):

            # sample perturbed versions
            X_R_CuJ2 = None
            X_R_CuJ = sampler.sample(X_eval,
                                     R_,
                                     CuJ,
                                     num_samples=nr_resample_marginalize)
            index = X_R_CuJ.index

            df_yh = pd.DataFrame(
                index=index, columns=['y_hat_baseline', 'y_hat_foreground'])

            for ll in np.arange(0, nr_resample_marginalize, 1):

                X_tilde_baseline = X_eval.copy()
                X_tilde_foreground = X_eval.copy()

                arr_reconstr = X_R_CuJ.loc[(ll, slice(None)), R_].to_numpy()
                X_tilde_foreground[R_] = arr_reconstr

                X_R_decorr = decorrelator.decorrelate(X_tilde_foreground, K, J,
                                                      C)
                arr_decorr = X_R_decorr[R].to_numpy()

                X_tilde_baseline[R] = arr_decorr

                # make sure model can handle it (selection and ordering)
                X_tilde_baseline = X_tilde_baseline[D]
                X_tilde_foreground = X_tilde_foreground[D]

                y_hat_baseline = self.model(X_tilde_baseline)
                y_hat_foreground = self.model(X_tilde_foreground)

                df_yh.loc[(ll, slice(None)), 'y_hat_baseline'] = y_hat_baseline
                df_yh.loc[(ll, slice(None)),
                          'y_hat_foreground'] = y_hat_foreground

            df_yh = df_yh.astype({
                'y_hat_baseline': 'float',
                'y_hat_foreground': 'float'
            })
            df_yh = df_yh.mean(level='i')

            # compute difference in observationwise loss
            if target == 'Y':
                loss_baseline = loss(y_eval, df_yh['y_hat_baseline'])
                loss_foreground = loss(y_eval, df_yh['y_hat_foreground'])
                diffs = (loss_baseline - loss_foreground)
                scores.loc[(kk, slice(None)), 'score'] = diffs
            elif target == 'Y_hat':
                diffs = loss(df_yh['y_hat_baseline'],
                             df_yh['y_hat_foreground'])
                scores.loc[(kk, slice(None)), 'score'] = diffs

        # return explanation object
        ex_name = desc
        result = explanation.Explanation(self.fsoi, scores, ex_name=ex_name)

        if return_perturbed:
            raise NotImplementedError('return_perturbed=True not implemented.')
        else:
            logger.debug('Return explanation object only')
            return result
    def sage(self,
             X_test,
             y_test,
             partial_ordering,
             nr_orderings=None,
             approx=math.sqrt,
             save_orderings=True,
             nr_runs=10,
             sampler=None,
             loss=None,
             train_allowed=True,
             D=None,
             nr_resample_marginalize=10,
             target='Y',
             G=None,
             method='associative',
             marginalize=True,
             orderings=None,
             **kwargs):
        """
        Compute Shapley Additive Global Importance values.
        Args:
            type: either 'rfi' or 'rfa', depending on whether conditional
                or marginal resampling of the remaining features shall
                be used
            X_test: data to use for resampling and evaluation.
            y_test: labels for evaluation.
            nr_orderings: number of orderings in which features enter the model
            nr_runs: how often each value function shall be computed
            sampler: choice of sampler. Default None. Will throw an error
              when sampler is None and self.sampler is None as well.
            loss: choice of loss. Default None. Will throw an Error when
              both loss and self.loss are None.
            train_allowed: whether the explainer is allowed to
                train the sampler

        Returns:
            result: an explanation object containing the respective
                pairwise lossdifferences with shape
                (nr_fsoi, nr_runs, nr_obs, nr_orderings)
            orderings (optional): an array containing the respective
                orderings if return_orderings
        """
        if G is None:
            G = X_test.columns

        if X_test.shape[1] != len(self.fsoi):
            logger.debug('self.fsoi: {}'.format(self.fsoi))
            logger.debug('#features in model: {}'.format(X_test.shape[1]))
            raise RuntimeError('self.fsoi is not identical to all features')

        if method not in ['associative', 'direct']:
            raise ValueError('only methods associative or direct implemented')

        if sampler is None:
            if self._sampler_specified():
                sampler = self.sampler
                logger.debug("Using class specified sampler.")

        if loss is None:
            if self._loss_specified():
                loss = self.loss
                logger.debug("Using class specified loss.")

        if orderings is None:
            if nr_orderings is None:
                nr_unique = utils.nr_unique_perm(partial_ordering)
                if approx is not None:
                    nr_orderings = math.floor(approx(nr_unique))
                else:
                    nr_orderings = nr_unique
        else:
            nr_orderings = orderings.shape[0]

        if D is None:
            D = X_test.columns

        nr_orderings_saved = 1
        if save_orderings:
            nr_orderings_saved = nr_orderings

        # create dataframe for computation results
        index = utils.create_multiindex(['ordering', 'sample', 'id'], [
            np.arange(nr_orderings_saved),
            np.arange(nr_runs),
            np.arange(X_test.shape[0])
        ])
        arr = np.zeros(
            (nr_orderings_saved * nr_runs * X_test.shape[0], len(self.fsoi)))
        scores = pd.DataFrame(arr, index=index, columns=self.fsoi)

        orderings_sampled = None
        if orderings is None:
            orderings_sampled = pd.DataFrame(index=np.arange(nr_orderings),
                                             columns=['ordering'])

        # lss = np.zeros(
        #     (len(self.fsoi), nr_runs, X_test.shape[0], nr_orderings))
        # ord hist helps to avoid duplicate histories
        ord_hist = None
        for ii in range(nr_orderings):
            ordering = None
            if orderings is None:
                ordering, ord_hist = utils.sample_partial(
                    partial_ordering, ord_hist)
                orderings_sampled.loc[ii, 'ordering'] = ordering
            else:
                ordering = orderings.loc[ii, 'ordering']

            logging.info('Ordering : {}'.format(ordering))

            for jj in np.arange(1, len(ordering), 1):
                # TODO: check if jj in features for which the score shall
                # TODO: be computed
                # compute change in performance
                # by entering the respective feature
                # store the result in the right place
                # validate training of sampler
                J, C = [ordering[jj - 1]], ordering[:jj - 1]
                if method == 'associative':
                    ex = self.ar_via(
                        J,
                        C,
                        G,
                        X_test,
                        y_test,
                        target=target,
                        marginalize=marginalize,
                        nr_runs=nr_runs,
                        nr_resample_marginalize=nr_resample_marginalize,
                        **kwargs)
                elif method == 'direct':
                    ex = self.dr_from(
                        J,
                        C,
                        G,
                        X_test,
                        y_test,
                        target=target,
                        marginalize=marginalize,
                        nr_runs=nr_runs,
                        nr_resample_marginalize=nr_resample_marginalize,
                        **kwargs)
                scores_arr = ex.scores.to_numpy()
                scores.loc[(ii, slice(None), slice(None)),
                           ordering[jj - 1]] = scores_arr

        result = explanation.Explanation(self.fsoi, scores, ex_name='SAGE')

        if orderings is None:
            orderings = orderings_sampled

        return result, orderings