async def async_test_handle_query(self): """Verify valid input leads to a query message.""" query_id = str(uuid.uuid4()) text = "set the bedroom light to red" query = NluQuery(input=text, id=query_id, site_id=self.site_id, session_id=self.session_id) results = [] async for result in self.hermes.on_message(query): results.append(result) # Check results intent = Intent(intent_name="SetLightColor", confidence_score=1.0) slots = [ Slot( entity="name", slot_name="name", value={ "kind": "Unknown", "value": "bedroom" }, raw_value="bedroom", confidence=1.0, range=SlotRange(start=8, end=15, raw_start=8, raw_end=15), ), Slot( entity="color", slot_name="color", value={ "kind": "Unknown", "value": "red" }, raw_value="red", confidence=1.0, range=SlotRange(start=25, end=28, raw_start=25, raw_end=28), ), ] self.assertEqual( results, [ NluIntentParsed( input=text, id=query_id, site_id=self.site_id, session_id=self.session_id, intent=intent, slots=slots, ), ( NluIntent( input=text, id=query_id, site_id=self.site_id, session_id=self.session_id, intent=intent, slots=slots, asr_tokens=[NluIntent.make_asr_tokens(text.split())], raw_input=text, ), { "intent_name": intent.intent_name }, ), ], )
def on_message(self, client, userdata, msg): """Received message from MQTT broker.""" try: _LOGGER.debug("Received %s byte(s) on %s", len(msg.payload), msg.topic) if msg.topic == DialogueStartSession.topic(): # Start session json_payload = json.loads(msg.payload) if not self._check_siteId(json_payload): return # Run in event loop (for TTS) asyncio.run_coroutine_threadsafe( self.handle_start(DialogueStartSession(**json_payload)), self.loop) elif msg.topic == DialogueContinueSession.topic(): # Continue session json_payload = json.loads(msg.payload) if not self._check_siteId(json_payload): return # Run in event loop (for TTS) asyncio.run_coroutine_threadsafe( self.handle_continue( DialogueContinueSession(**json_payload)), self.loop, ) elif msg.topic == DialogueEndSession.topic(): # End session json_payload = json.loads(msg.payload) if not self._check_siteId(json_payload): return # Run outside event loop self.handle_end(DialogueEndSession(**json_payload)) elif msg.topic == TtsSayFinished.topic(): # TTS finished json_payload = json.loads(msg.payload) if not self._check_sessionId(json_payload): return # Signal event loop self.loop.call_soon_threadsafe(self.say_finished_event.set) elif msg.topic == AsrTextCaptured.topic(): # Text captured json_payload = json.loads(msg.payload) if not self._check_sessionId(json_payload): return # Run outside event loop self.handle_text_captured(AsrTextCaptured(**json_payload)) elif msg.topic.startswith(NluIntent.topic(intent_name="")): # Intent recognized json_payload = json.loads(msg.payload) if not self._check_sessionId(json_payload): return self.handle_recognized(NluIntent(**json_payload)) elif msg.topic.startswith(NluIntentNotRecognized.topic()): # Intent recognized json_payload = json.loads(msg.payload) if not self._check_sessionId(json_payload): return # Run in event loop (for TTS) asyncio.run_coroutine_threadsafe( self.handle_not_recognized( NluIntentNotRecognized(**json_payload)), self.loop, ) elif msg.topic in self.wakeword_topics: json_payload = json.loads(msg.payload) if not self._check_siteId(json_payload): return wakeword_id = self.wakeword_topics[msg.topic] asyncio.run_coroutine_threadsafe( self.handle_wake(wakeword_id, HotwordDetected(**json_payload)), self.loop, ) except Exception: _LOGGER.exception("on_message")
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[ typing.Union[ NluIntentParsed, typing.Tuple[NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ] ]: """Do intent recognition.""" original_input = query.input try: self.maybe_load_engine() assert self.engine, "Snips engine not loaded. You may need to train." input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) # Do parsing result = self.engine.parse(input_text, query.intent_filter) intent_name = result.get("intent", {}).get("intentName") confidence_score = result.get("intent", {}).get("probability") if query.implicit: if confidence_score > 0.8: intent_recognized = intent_name is not None self.publish(HandleToggleOn(self.site_id)) else: intent_recognized = False else: intent_recognized = intent_name is not None _LOGGER.debug("Intent recognized and Confidence suficient: %s", intent_recognized) if intent_recognized: slots = [ Slot( slot_name=s["slotName"], entity=s["entity"], value=s["value"], raw_value=s["rawValue"], range=SlotRange( start=s["range"]["start"], end=s["range"]["end"] ), ) for s in result.get("slots", []) ] # intentParsed yield NluIntentParsed( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=confidence_score), slots=slots, ) # intent yield ( NluIntent( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=confidence_score), slots=slots, asr_tokens=[NluIntent.make_asr_tokens(query.input.split())], raw_input=original_input, wakeword_id=query.wakeword_id, lang=query.lang, ), {"intent_name": intent_name}, ) else: # Not recognized _LOGGER.debug("Intent not Recognized and Implicit: %s", query.implicit) yield NluIntentNotRecognized( input=query.input, implicit=query.implicit, id=query.id, site_id=query.site_id, session_id=query.session_id, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=original_input, )
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" # Check intent graph try: if (not self.intent_graph and self.intent_graph_path and self.intent_graph_path.is_file()): _LOGGER.debug("Loading %s", self.intent_graph_path) with open(self.intent_graph_path, mode="rb") as graph_file: self.intent_graph = rhasspynlu.gzip_pickle_to_graph( graph_file) # Check examples if (self.intent_graph and self.examples_path and self.examples_path.is_file()): def intent_filter(intent_name: str) -> bool: """Filter out intents.""" if query.intent_filter: return intent_name in query.intent_filter return True original_text = query.input # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.language) query.input = " ".join(words) input_text = query.input # Fix casing if self.word_transform: input_text = self.word_transform(input_text) recognitions: typing.List[rhasspynlu.intent.Recognition] = [] if input_text: recognitions = rhasspyfuzzywuzzy.recognize( input_text, self.intent_graph, str(self.examples_path), intent_filter=intent_filter, extra_converters=self.extra_converters, ) else: _LOGGER.error("No intent graph or examples loaded") recognitions = [] # Use first recognition only if above threshold if (recognitions and recognitions[0] and recognitions[0].intent and (recognitions[0].intent.confidence >= self.confidence_threshold)): recognition = recognitions[0] assert recognition.intent intent = Intent( intent_name=recognition.intent.name, confidence_score=recognition.intent.confidence, ) slots = [ Slot( entity=(e.source or e.entity), slot_name=e.entity, confidence=1.0, value=e.value_dict, raw_value=e.raw_value, range=SlotRange( start=e.start, end=e.end, raw_start=e.raw_start, raw_end=e.raw_end, ), ) for e in recognition.entities ] if query.custom_entities: # Copy user-defined entities for entity_name, entity_value in query.custom_entities.items( ): slots.append( Slot( entity=entity_name, confidence=1.0, value={"value": entity_value}, )) # intentParsed yield NluIntentParsed( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, ) # intent yield ( NluIntent( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(recognition.tokens) ], asr_confidence=query.asr_confidence, raw_input=original_text, wakeword_id=query.wakeword_id, lang=(query.lang or self.lang), custom_data=query.custom_data, ), { "intent_name": recognition.intent.name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, custom_data=query.custom_data, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=original_text, )
async def on_raw_message(self, topic: str, payload: bytes): """This method handles messages from the MQTT broker. Arguments: topic: The topic of the received MQTT message. payload: The payload of the received MQTT message. .. warning:: Don't override this method in your app. This is where all the magic happens in Rhasspy Hermes App. """ try: if HotwordDetected.is_topic(topic): # hermes/hotword/<wakeword_id>/detected try: hotword_detected = HotwordDetected.from_json(payload) for function_h in self._callbacks_hotword: await function_h(hotword_detected) except KeyError as key: _LOGGER.error( "Missing key %s in JSON payload for %s: %s", key, topic, payload ) elif NluIntent.is_topic(topic): # hermes/intent/<intent_name> try: nlu_intent = NluIntent.from_json(payload) intent_name = nlu_intent.intent.intent_name if intent_name in self._callbacks_intent: for function_i in self._callbacks_intent[intent_name]: await function_i(nlu_intent) except KeyError as key: _LOGGER.error( "Missing key %s in JSON payload for %s: %s", key, topic, payload ) elif NluIntentNotRecognized.is_topic(topic): # hermes/nlu/intentNotRecognized try: nlu_intent_not_recognized = NluIntentNotRecognized.from_json( payload ) for function_inr in self._callbacks_intent_not_recognized: await function_inr(nlu_intent_not_recognized) except KeyError as key: _LOGGER.error( "Missing key %s in JSON payload for %s: %s", key, topic, payload ) elif DialogueIntentNotRecognized.is_topic(topic): # hermes/dialogueManager/intentNotRecognized try: dialogue_intent_not_recognized = ( DialogueIntentNotRecognized.from_json(payload) ) for function_dinr in self._callbacks_dialogue_intent_not_recognized: await function_dinr(dialogue_intent_not_recognized) except KeyError as key: _LOGGER.error( "Missing key %s in JSON payload for %s: %s", key, topic, payload ) else: unexpected_topic = True if topic in self._callbacks_topic: for function_1 in self._callbacks_topic[topic]: await function_1(TopicData(topic, {}), payload) unexpected_topic = False else: for function_2 in self._callbacks_topic_regex: if hasattr(function_2, "topic_extras"): topic_extras = getattr(function_2, "topic_extras") for pattern, named_positions in topic_extras: if re.match(pattern, topic) is not None: data = TopicData(topic, {}) parts = topic.split(sep="/") if named_positions is not None: for name, position in named_positions.items(): data.data[name] = parts[position] await function_2(data, payload) unexpected_topic = False if unexpected_topic: _LOGGER.warning("Unexpected topic: %s", topic) except Exception: _LOGGER.exception("on_raw_message")
def test_http_nlu_new_slot(self): """Test recognition with a new slot""" response = requests.post( self.api_url("text-to-intent"), data="what is the weather like in Germany", params={"outputFormat": "hermes"}, ) self.check_status(response) # Shouldn't exist yet result = response.json() self.assertEqual(result["type"], "intentNotRecognized") # Get sentences response = requests.get(self.api_url("sentences"), headers={"Accept": "application/json"}) self.check_status(response) sentences = response.json() try: # Add new slot response = requests.post(self.api_url("slots/location"), json=["Germany", "France"]) self.check_status(response) # Add new intent sentences[ "intents/weather.ini"] = "[GetWeather]\nwhat is the weather like in ($location){location}\n" # Save sentences response = requests.post(self.api_url("sentences"), json=sentences) self.check_status(response) # Re-train response = requests.post(self.api_url("train")) self.check_status(response) # Should work now response = requests.post( self.api_url("text-to-intent"), data="what is the weather like in Germany", params={"outputFormat": "hermes"}, ) self.check_status(response) result = response.json() self.assertEqual(result["type"], "intent") nlu_intent = NluIntent.from_dict(result["value"]) # Intent name and slots self.assertEqual(nlu_intent.intent.intent_name, "GetWeather") slots_by_name = {slot.slot_name: slot for slot in nlu_intent.slots} self.assertIn("location", slots_by_name) self.assertEqual(slots_by_name["location"].value["value"], "Germany") finally: # Remove slot response = requests.post( self.api_url("slots/location"), json=[], params={"overwrite_all": "true"}, ) self.check_status(response) # Remove sentences sentences["intents/weather.ini"] = "" response = requests.post(self.api_url("sentences"), json=sentences) self.check_status(response) # Re-train response = requests.post(self.api_url("train")) self.check_status(response)
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" original_input = query.input try: if not self.intent_graph and self.graph_path and self.graph_path.is_file( ): # Load graph from file _LOGGER.debug("Loading %s", self.graph_path) with open(self.graph_path, mode="rb") as graph_file: self.intent_graph = rhasspynlu.gzip_pickle_to_graph( graph_file) if self.intent_graph: def intent_filter(intent_name: str) -> bool: """Filter out intents.""" if query.intent_filter: return intent_name in query.intent_filter return True # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.language) query.input = " ".join(words) input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) # Pass in raw query input so raw values will be correct recognitions = recognize( query.input, self.intent_graph, intent_filter=intent_filter, word_transform=self.word_transform, fuzzy=self.fuzzy, ) else: _LOGGER.error("No intent graph loaded") recognitions = [] if recognitions: # Use first recognition only. recognition = recognitions[0] assert recognition is not None assert recognition.intent is not None intent = Intent( intent_name=recognition.intent.name, confidence_score=recognition.intent.confidence, ) slots = [ Slot( entity=(e.source or e.entity), slot_name=e.entity, confidence=1.0, value=e.value_dict, raw_value=e.raw_value, range=SlotRange( start=e.start, end=e.end, raw_start=e.raw_start, raw_end=e.raw_end, ), ) for e in recognition.entities ] # intentParsed yield NluIntentParsed( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, ) # intent yield ( NluIntent( input=recognition.text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=intent, slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(recognition.tokens) ], raw_input=original_input, wakeword_id=query.wakeword_id, lang=query.lang, ), { "intent_name": recognition.intent.name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=original_input, )
async def handle_intent( self, intent: NluIntent ) -> typing.AsyncIterable[typing.Union[TtsSay]]: """Handle intent with remote server or local command.""" try: if not self.handle_enabled: _LOGGER.debug("Intent handling is disabled") return tts_text = "" intent_dict = intent.to_rhasspy_dict() # Add site_id intent_dict["site_id"] = intent.site_id if self.handle_url: # Remote server _LOGGER.debug(self.handle_url) async with self.http_session.post( self.handle_url, json=intent_dict, ssl=self.ssl_context ) as response: response.raise_for_status() response_dict = await response.json() # Check for speech response tts_text = response_dict.get("speech", {}).get("text", "") elif self.handle_command: intent_json = json.dumps(intent_dict) # Local handling command _LOGGER.debug(self.handle_command) proc = await asyncio.create_subprocess_exec( *self.handle_command, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, ) output, error = await proc.communicate(intent_json.encode()) if error: _LOGGER.debug(error.decode()) try: response_dict = json.loads(output) # Check for speech response tts_text = response_dict.get("speech", {}).get("text", "") except json.JSONDecodeError as e: if output: # Only report error if non-empty output _LOGGER.warning("Failed to parse output as JSON: %s", e) _LOGGER.warning("Output: %s", output) else: _LOGGER.warning("Can't handle intent. No handle URL or command.") if tts_text: # Forward to TTS system yield TtsSay( text=tts_text, id=str(uuid4()), site_id=intent.site_id, session_id=intent.session_id, ) except Exception: _LOGGER.exception("handle_intent")
def test_nlu_intent(): """Test NluIntent.""" assert NluIntent.is_topic(NluIntent.topic(intent_name=intent_name)) assert (NluIntent.get_intent_name( NluIntent.topic(intent_name=intent_name)) == intent_name)
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[ typing.Union[ typing.Tuple[NluIntent, TopicArgs], NluIntentParsed, NluIntentNotRecognized, NluError, ] ]: """Do intent recognition.""" try: input_text = query.input # Fix casing if self.word_transform: input_text = self.word_transform(input_text) if self.nlu_url: # Use remote server _LOGGER.debug(self.nlu_url) params = {} # Add intent filter if query.intent_filter: params["intentFilter"] = ",".join(query.intent_filter) async with self.http_session.post( self.nlu_url, data=input_text, params=params, ssl=self.ssl_context ) as response: response.raise_for_status() intent_dict = await response.json() elif self.nlu_command: # Run external command _LOGGER.debug(self.nlu_command) proc = await asyncio.create_subprocess_exec( *self.nlu_command, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, ) input_bytes = (input_text.strip() + "\n").encode() output, error = await proc.communicate(input_bytes) if error: _LOGGER.debug(error.decode()) intent_dict = json.loads(output) else: _LOGGER.warning("Not handling NLU query (no URL or command)") return intent_name = intent_dict["intent"].get("name", "") if intent_name: # Recognized tokens = query.input.split() slots = [ Slot( entity=e["entity"], slot_name=e["entity"], confidence=1, value=e.get("value_details", {"value": ["value"]}), raw_value=e.get("raw_value", e["value"]), range=SlotRange( start=e.get("start", 0), end=e.get("end", 1), raw_start=e.get("raw_start"), raw_end=e.get("raw_end"), ), ) for e in intent_dict.get("entities", []) ] yield NluIntentParsed( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent( intent_name=intent_name, confidence_score=intent_dict["intent"].get("confidence", 1.0), ), slots=slots, ) yield ( NluIntent( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent( intent_name=intent_name, confidence_score=intent_dict["intent"].get( "confidence", 1.0 ), ), slots=slots, asr_tokens=[NluIntent.make_asr_tokens(tokens)], raw_input=query.input, wakeword_id=query.wakeword_id, lang=query.lang, ), {"intent_name": intent_name}, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( error=repr(e), context=repr(query), site_id=query.site_id, session_id=query.session_id, )
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" try: original_input = query.input # Replace digits with words if self.replace_numbers: # Have to assume whitespace tokenization words = rhasspynlu.replace_numbers(query.input.split(), self.number_language) query.input = " ".join(words) input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) parse_url = urljoin(self.rasa_url, "model/parse") _LOGGER.debug(parse_url) async with self.http_session.post( parse_url, json={ "text": input_text, "project": self.rasa_project }, ssl=self.ssl_context, ) as response: response.raise_for_status() intent_json = await response.json() intent = intent_json.get("intent", {}) intent_name = intent.get("name", "") if intent_name and (query.intent_filter is None or intent_name in query.intent_filter): confidence_score = float(intent.get("confidence", 0.0)) slots = [ Slot( entity=e.get("entity", ""), slot_name=e.get("entity", ""), confidence=float(e.get("confidence", 0.0)), value={ "kind": "Unknown", "value": e.get("value", "") }, raw_value=e.get("value", ""), range=SlotRange( start=int(e.get("start", 0)), end=int(e.get("end", 1)), raw_start=int(e.get("start", 0)), raw_end=int(e.get("end", 1)), ), ) for e in intent_json.get("entities", []) ] if query.custom_entities: # Copy user-defined entities for entity_name, entity_value in query.custom_entities.items( ): slots.append( Slot( entity=entity_name, confidence=1.0, value={"value": entity_value}, )) # intentParsed yield NluIntentParsed( input=input_text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=confidence_score), slots=slots, ) # intent yield ( NluIntent( input=input_text, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent( intent_name=intent_name, confidence_score=confidence_score, ), slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(input_text.split()) ], asr_confidence=query.asr_confidence, raw_input=original_input, lang=(query.lang or self.lang), custom_data=query.custom_data, ), { "intent_name": intent_name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, custom_data=query.custom_data, ) except Exception as e: _LOGGER.exception("nlu query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=query.input, )
def get_template_values(intent_message: NluIntent) -> dict: return rhasspy_intent.get_template_values(intent_message.to_rhasspy_dict())
"""Tests for rhasspyhermes_app intent.""" # pylint: disable=protected-access,too-many-function-args import asyncio import pytest from rhasspyhermes.intent import Intent from rhasspyhermes.nlu import NluIntent from rhasspyhermes_app import HermesApp INTENT_NAME = "GetTime" INTENT_TOPIC = f"hermes/intent/{INTENT_NAME}" INTENT = Intent(INTENT_NAME, 1.0) NLU_INTENT = NluIntent("what time is it", INTENT) INTENT_NAME2 = "GetTemperature" INTENT_TOPIC2 = f"hermes/intent/{INTENT_NAME2}" INTENT2 = Intent(INTENT_NAME2, 1.0) NLU_INTENT2 = NluIntent("what's the temperature", INTENT2) INTENT_NAME3 = "GetWeather" INTENT_TOPIC3 = f"hermes/intent/{INTENT_NAME3}" INTENT3 = Intent(INTENT_NAME3, 1.0) NLU_INTENT3 = NluIntent("how's the weather", INTENT3) _LOOP = asyncio.get_event_loop() @pytest.mark.asyncio async def test_callbacks_intent(mocker): """Test intent callbacks."""
async def handle_query( self, query: NluQuery ) -> typing.AsyncIterable[typing.Union[NluIntentParsed, typing.Tuple[ NluIntent, TopicArgs], NluIntentNotRecognized, NluError, ]]: """Do intent recognition.""" original_input = query.input try: self.maybe_load_engine() assert self.engine, "Snips engine not loaded. You may need to train." input_text = query.input # Fix casing for output event if self.word_transform: input_text = self.word_transform(input_text) # Do parsing result = self.engine.parse(input_text, query.intent_filter) intent_name = result.get("intent", {}).get("intentName") if intent_name: slots = [ Slot( slot_name=s["slotName"], entity=s["entity"], value=s["value"], raw_value=s["rawValue"], range=SlotRange(start=s["range"]["start"], end=s["range"]["end"]), ) for s in result.get("slots", []) ] if query.custom_entities: # Copy user-defined entities for entity_name, entity_value in query.custom_entities.items( ): slots.append( Slot( entity=entity_name, confidence=1.0, value={"value": entity_value}, )) # intentParsed yield NluIntentParsed( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=1.0), slots=slots, ) # intent yield ( NluIntent( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, intent=Intent(intent_name=intent_name, confidence_score=1.0), slots=slots, asr_tokens=[ NluIntent.make_asr_tokens(query.input.split()) ], asr_confidence=query.asr_confidence, raw_input=original_input, wakeword_id=query.wakeword_id, lang=query.lang, custom_data=query.custom_data, ), { "intent_name": intent_name }, ) else: # Not recognized yield NluIntentNotRecognized( input=query.input, id=query.id, site_id=query.site_id, session_id=query.session_id, custom_data=query.custom_data, ) except Exception as e: _LOGGER.exception("handle_query") yield NluError( site_id=query.site_id, session_id=query.session_id, error=str(e), context=original_input, )