示例#1
0
def toa_reflectance(infiles, outfile, mtdfile, bands):
    """Calculate TOA reflectance

    Parameters
    ----------
    infiles : list of str or str
        paths to Landsat 8 band files
        or URIs for members in TAR file
        or path to TAR file
    outfile : str
        path to save output to
    mtdfile : str
        path to metadata file
    bands : list of int
        bands to extract from TAR file
        or bands that the URIs correspond to
    """
    bandfiles = l8utils.get_bandfiles(infiles, bands)
    reflectance.calculate_landsat_reflectance(src_path=bandfiles,
                                              src_mtl=mtdfile,
                                              dst_path=outfile,
                                              rescale_factor=None,
                                              creation_options={},
                                              bands=bands,
                                              dst_dtype='float32',
                                              processes=1,
                                              pixel_sunangle=True)
示例#2
0
    def create_toa(self, image_path, dst_path, mtl):
        # In this function we use rasterio library to calculate Landsat0 Top of atmosphere images

        creation_options = {'nodata': 0, 'compress': 'deflate', 'predict': 2}
        try:
            #define which band
            bandnum = _parse_bands_from_filename([image_path],
                                                 '.*/LC08.*\_B{b}.TIF')
            print(bandnum)

            calculate_landsat_reflectance(
                [image_path],
                mtl,
                dst_path,
                rescale_factor=55000,
                creation_options=creation_options,
                bands=bandnum,
                dst_dtype='uint16',
                processes=4,
                pixel_sunangle=True,
            )

            return dst_path
        except ValueError:
            pass
示例#3
0
文件: cli.py 项目: plschoon/rio-toa
def reflectance(ctx, src_paths, src_mtl, dst_path, dst_dtype, rescale_factor,
                clip, readtemplate, workers, l8_bidx, verbose,
                creation_options, pixel_sunangle):
    """Calculates Landsat8 Top of Atmosphere Reflectance
    """
    if verbose:
        logger.setLevel(logging.DEBUG)

    if l8_bidx == 0:
        l8_bidx = _parse_bands_from_filename(list(src_paths), readtemplate)

    calculate_landsat_reflectance(list(src_paths), src_mtl, dst_path,
                                  rescale_factor, creation_options,
                                  list(l8_bidx), dst_dtype, workers,
                                  pixel_sunangle, clip)
示例#4
0
def test_calculate_landsat_reflectance(test_var, capfd):
    src_path, src_mtl = test_var[0], test_var[3]
    dst_path = '/tmp/ref1.TIF'
    rescale_factor = 1.0
    creation_options = {}
    band = 5
    dst_dtype = 'uint8'
    processes = 1
    pixel_sunangle = False
    reflectance.calculate_landsat_reflectance([src_path], src_mtl, dst_path,
                                              rescale_factor, creation_options,
                                              [band], dst_dtype, processes,
                                              pixel_sunangle)
    out, err = capfd.readouterr()
    assert os.path.exists(dst_path)
示例#5
0
def reflectance(ctx, src_path, src_mtl, dst_path, verbose, creation_options,
                l8_bidx, dst_dtype, workers):
    """Calculates Landsat8 Surface Reflectance
    """
    if verbose:
        logger.setLevel(logging.DEBUG)

    if l8_bidx == 0:
        template = '.*\LC8.*_B{b}.TIF'
        l8_bidx = _parse_bands_from_filename([src_path], template)[0]
    elif not isinstance(l8_bidx, int):
        raise ValueError("%s is not a valid integer" % l8_bidx)

    calculate_landsat_reflectance(src_path, src_mtl, dst_path,
                                  creation_options, l8_bidx, dst_dtype,
                                  workers)
示例#6
0
def test_calculate_landsat_reflectance_single_pixel(test_var, capfd):
    src_path, src_mtl = test_var[0], test_var[3]
    dst_path = '/tmp/ref1.tif'
    expected_path = 'tests/expected/ref1.tif'
    rescale_factor = 1.0
    creation_options = {}
    band = 5
    dst_dtype = 'uint16'
    processes = 1
    pixel_sunangle = True

    reflectance.calculate_landsat_reflectance([src_path], src_mtl, dst_path,
                                              rescale_factor, creation_options,
                                              [band], dst_dtype, processes,
                                              pixel_sunangle)
    out, err = capfd.readouterr()

    with rio.open(dst_path) as created:
        with rio.open(expected_path) as expected:
            assert flex_compare(created.read(), expected.read())
示例#7
0
文件: apply_srem.py 项目: oyam/srem
def apply_srem(input_raster_file: str,
               metadata_file: str,
               angle_file: str,
               output_raster_file: str) -> None:
    out_dir = os.path.join(os.path.dirname(output_raster_file))
    os.makedirs(out_dir, exist_ok=True)
    band_id = utils.get_band_id(input_raster_file)
    wavelength = OLI_WAVELENGTHS[band_id]

    with tempfile.TemporaryDirectory() as tmp_dir:
        toa_file = os.path.join(tmp_dir, 'toa.tif')
        reflectance.calculate_landsat_reflectance(
            [input_raster_file],
            metadata_file,
            toa_file,
            rescale_factor=1.0,
            creation_options={},
            bands=[band_id],
            dst_dtype='float32',
            processes=1,
            pixel_sunangle=True,
            clip=True)
        solar_angle_file, sensor_angle_file = \
            utils.get_pixel_angle_files(angle_file, band_id, tmp_dir)

        with rasterio.open(input_raster_file) as src:
            options = src.profile
            options.update(nodata=0)
        with riomucho.RioMucho(
                [toa_file, solar_angle_file, sensor_angle_file],
                output_raster_file,
                utils.srem_worker,
                mode='array_read',
                global_args={
                    'wavelength': wavelength,
                    'dtype': options['dtype']},
                options=options) as rios:
            rios.run(4)
示例#8
0
def test_calculate_landsat_reflectance_stack_pixel(test_var, test_data, capfd):
    src_path, src_mtl, tif_output_stack = \
        test_var[:3], test_var[3], test_data[-3]
    dst_path = '/tmp/ref2.tif'
    expected_path = 'tests/expected/ref2.tif'
    creation_options = {}
    dst_dtype = 'uint8'
    rescale_factor = 215
    processes = 1
    pixel_sunangle = True

    reflectance.calculate_landsat_reflectance(list(src_path), src_mtl,
                                              dst_path, rescale_factor,
                                              creation_options, [4, 3, 2],
                                              dst_dtype, processes,
                                              pixel_sunangle)

    out, err = capfd.readouterr()
    assert os.path.exists(dst_path)

    with rio.open(dst_path) as created:
        with rio.open(expected_path) as expected:
            assert flex_compare(created.read(), expected.read())
示例#9
0
        write_cloud_mask(qa_raster.read(1), profile, os.path.join(dst_folder, 'cloudmask.TIF'))


# Set up the second loop. For bands 1 to 9 in this image.
pbar_2nd_loop = tqdm_notebook(range(1, 10), desc='Band')

# Iterate bands 1 to 0 using the tqdm_notebook object defined above
for band in pbar_2nd_loop:
    # Use glob to find the current band GeoTiff in this image.
    src_path = glob(os.path.join(src_folder, '*B{}.TIF'.format(band)))
    dst_path = os.path.join(dst_folder, 'TOA_B{}.TIF'.format(band))
        # Writing reflectance takes a bit to process, so if it crashes during the processing,
        # this code skips the ones that were already processed.
    if not os.path.exists(dst_path):
        # Use the `rio-toa` module for reflectance.
        reflectance.calculate_landsat_reflectance(src_path, src_mtl,dst_path, rescale_factor=rescale_factor, creation_options=creation_options,bands=[band], dst_dtype=dtype,processes=processes, pixel_sunangle=True)

# Just copy the metadata from source to destination in case we need it in the future.
shutil.copy(src_mtl, os.path.join(dst_folder, 'MTL.txt'))

from matplotlib.cm import viridis as cmap
import matplotlib.patheffects as pe

bounds = gpd.read_file('./data/area_of_study_bounds.gpkg')

xmin, xmax, ymin, ymax = [], [], [], []

for image_path in glob(os.path.join(DST_LANDSAT_FOLDER, '*/*B5.TIF')):
    with rasterio.open(image_path) as src_raster:
        xmin.append(src_raster.bounds.left)
        xmax.append(src_raster.bounds.right)