示例#1
0
    def write_crs(self,
                  input_crs=None,
                  grid_mapping_name=DEFAULT_GRID_MAP,
                  inplace=False):
        """
        Write the CRS to the dataset in a CF compliant manner.

        Parameters
        ----------
        input_crs: object
            Anything accepted by `rasterio.crs.CRS.from_user_input`.
        grid_mapping_name: str, optional
            Name of the coordinate to store the CRS information in.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        xarray.Dataset or xarray.DataArray:
        Modified dataset with CF compliant CRS information.

        """
        if input_crs is not None:
            data_obj = self.set_crs(input_crs, inplace=inplace)
        else:
            data_obj = self._get_obj(inplace=inplace)

        # remove old grid maping coordinate if exists
        try:
            del data_obj.coords[grid_mapping_name]
        except KeyError:
            pass

        if data_obj.rio.crs is None:
            raise MissingCRS(
                "CRS not found. Please set the CRS with 'set_crs()'.")
        # add grid mapping coordinate
        data_obj.coords[grid_mapping_name] = xarray.Variable((), 0)
        crs_wkt = crs_to_wkt(data_obj.rio.crs)
        grid_map_attrs = dict()
        grid_map_attrs["spatial_ref"] = crs_wkt
        # http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#appendix-grid-mappings
        # http://desktop.arcgis.com/en/arcmap/10.3/manage-data/netcdf/spatial-reference-for-netcdf-data.htm
        grid_map_attrs["crs_wkt"] = crs_wkt
        data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs,
                                                         inplace=True)

        # add grid mapping attribute to variables
        if hasattr(data_obj, "data_vars"):
            for var in data_obj.data_vars:
                if (self.x_dim in data_obj[var].dims
                        and self.y_dim in data_obj[var].dims):
                    data_obj[var].rio.update_attrs(
                        dict(grid_mapping=grid_mapping_name), inplace=True)
        data_obj.rio.update_attrs(dict(grid_mapping=grid_mapping_name),
                                  inplace=True)
        return data_obj
示例#2
0
    def write_crs(self, input_crs=None, grid_mapping_name=None, inplace=False):
        """
        Write the CRS to the dataset in a CF compliant manner.

        Parameters
        ----------
        input_crs: object
            Anything accepted by `rasterio.crs.CRS.from_user_input`.
        grid_mapping_name: str, optional
            Name of the grid_mapping coordinate to store the CRS information in.
            Default is the grid_mapping name of the dataset.
        inplace: bool, optional
            If True, it will write to the existing dataset. Default is False.

        Returns
        -------
        :obj:`xarray.Dataset` | :obj:`xarray.DataArray`:
            Modified dataset with CF compliant CRS information.
        """
        if input_crs is not None:
            data_obj = self.set_crs(input_crs, inplace=inplace)
        else:
            data_obj = self._get_obj(inplace=inplace)

        # get original transform
        transform = self._cached_transform()
        # remove old grid maping coordinate if exists
        grid_mapping_name = (self.grid_mapping if grid_mapping_name is None
                             else grid_mapping_name)
        try:
            del data_obj.coords[grid_mapping_name]
        except KeyError:
            pass

        if data_obj.rio.crs is None:
            raise MissingCRS(
                "CRS not found. Please set the CRS with 'rio.write_crs()'.")
        # add grid mapping coordinate
        data_obj.coords[grid_mapping_name] = xarray.Variable((), 0)
        grid_map_attrs = pyproj.CRS.from_user_input(data_obj.rio.crs).to_cf()
        # spatial_ref is for compatibility with GDAL
        crs_wkt = crs_to_wkt(data_obj.rio.crs)
        grid_map_attrs["spatial_ref"] = crs_wkt
        grid_map_attrs["crs_wkt"] = crs_wkt
        if transform is not None:
            grid_map_attrs["GeoTransform"] = " ".join(
                [str(item) for item in transform.to_gdal()])
        data_obj.coords[grid_mapping_name].rio.set_attrs(grid_map_attrs,
                                                         inplace=True)

        return data_obj.rio.write_grid_mapping(
            grid_mapping_name=grid_mapping_name, inplace=True)
示例#3
0
    def clip(
        self,
        geometries,
        crs=None,
        all_touched=False,
        drop=True,
        invert=False,
        from_disk=False,
    ):
        """
        Crops a :obj:`xarray.DataArray` by geojson like geometry dicts.

        Powered by `rasterio.features.geometry_mask`.

        Examples:

            >>> geometry = ''' {"type": "Polygon",
            ...                 "coordinates": [
            ...                 [[-94.07955380199459, 41.69085871273774],
            ...                 [-94.06082436942204, 41.69103313774798],
            ...                 [-94.06063203899649, 41.67932439500822],
            ...                 [-94.07935807746362, 41.679150041277325],
            ...                 [-94.07955380199459, 41.69085871273774]]]}'''
            >>> cropping_geometries = [geojson.loads(geometry)]
            >>> xds = xarray.open_rasterio('cool_raster.tif')
            >>> cropped = xds.rio.clip(geometries=cropping_geometries, crs=4326)


        .. versionadded:: 0.2 from_disk

        Parameters
        ----------
        geometries: list
            A list of geojson geometry dicts or objects with __geom_interface__ with
            if you have rasterio 1.2+.
        crs: :obj:`rasterio.crs.CRS`, optional
            The CRS of the input geometries. Default is to assume it is the same
            as the dataset.
        all_touched : bool, optional
            If True, all pixels touched by geometries will be burned in.  If
            false, only pixels whose center is within the polygon or that
            are selected by Bresenham's line algorithm will be burned in.
        drop: bool, optional
            If True, drop the data outside of the extent of the mask geoemtries
            Otherwise, it will return the same raster with the data masked.
            Default is True.
        invert: boolean, optional
            If False, pixels that do not overlap shapes will be set as nodata.
            Otherwise, pixels that overlap the shapes will be set as nodata.
            False by default.
        from_disk: boolean, optional
            If True, it will clip from disk using rasterio.mask.mask if possible.
            This is beneficial when the size of the data is larger than memory.
            Default is False.

        Returns
        -------
        :obj:`xarray.DataArray`:
            The clipped object.
        """
        if self.crs is None:
            raise MissingCRS(
                "CRS not found. Please set the CRS with 'rio.write_crs()'."
                f"{_get_data_var_message(self._obj)}")
        crs = crs_from_user_input(crs) if crs is not None else self.crs
        if self.crs != crs:
            if LooseVersion(rasterio.__version__) >= LooseVersion("1.2"):
                geometries = rasterio.warp.transform_geom(
                    crs, self.crs, geometries)
            else:
                geometries = [
                    rasterio.warp.transform_geom(crs, self.crs, geometry)
                    for geometry in geometries
                ]
        cropped_ds = None
        if from_disk:
            cropped_ds = _clip_from_disk(
                self._obj,
                geometries=geometries,
                all_touched=all_touched,
                drop=drop,
                invert=invert,
            )
        if cropped_ds is None:
            cropped_ds = _clip_xarray(
                self._obj,
                geometries=geometries,
                all_touched=all_touched,
                drop=drop,
                invert=invert,
            )

        if (cropped_ds.coords[self.x_dim].size < 1
                or cropped_ds.coords[self.y_dim].size < 1):
            raise NoDataInBounds(
                f"No data found in bounds.{_get_data_var_message(self._obj)}")

        # make sure correct attributes preserved & projection added
        _add_attrs_proj(cropped_ds, self._obj)

        return cropped_ds
示例#4
0
    def reproject(
        self,
        dst_crs,
        resolution=None,
        shape=None,
        transform=None,
        resampling=Resampling.nearest,
    ):
        """
        Reproject :obj:`xarray.DataArray` objects

        Powered by `rasterio.warp.reproject`

        .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported.
            Requires either a grid mapping variable with 'spatial_ref' or
            a 'crs' attribute to be set containing a valid CRS.
            If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT.

        .. versionadded:: 0.0.27 shape
        .. versionadded:: 0.0.28 transform

        Parameters
        ----------
        dst_crs: str
            OGC WKT string or Proj.4 string.
        resolution: float or tuple(float, float), optional
            Size of a destination pixel in destination projection units
            (e.g. degrees or metres).
        shape: tuple(int, int), optional
            Shape of the destination in pixels (dst_height, dst_width). Cannot be used
            together with resolution.
        transform: optional
            The destination transform.
        resampling: Resampling method, optional
            See rasterio.warp.reproject for more details.


        Returns
        -------
        :obj:`xarray.DataArray`:
            The reprojected DataArray.
        """
        if resolution is not None and (shape is not None
                                       or transform is not None):
            raise RioXarrayError(
                "resolution cannot be used with shape or transform.")
        if self.crs is None:
            raise MissingCRS(
                "CRS not found. Please set the CRS with 'rio.write_crs()'."
                f"{_get_data_var_message(self._obj)}")
        src_affine = self.transform(recalc=True)
        if transform is None:
            dst_affine, dst_width, dst_height = _make_dst_affine(
                self._obj, self.crs, dst_crs, resolution, shape)
        else:
            dst_affine = transform
            if shape is not None:
                dst_height, dst_width = shape
            else:
                dst_height, dst_width = self.shape

        extra_dim = self._check_dimensions()
        if extra_dim:
            dst_data = np.zeros(
                (self._obj[extra_dim].size, dst_height, dst_width),
                dtype=self._obj.dtype.type,
            )
        else:
            dst_data = np.zeros((dst_height, dst_width),
                                dtype=self._obj.dtype.type)

        dst_nodata = self._obj.dtype.type(
            self.nodata if self.nodata is not None else -9999)
        src_nodata = self._obj.dtype.type(
            self.nodata if self.nodata is not None else dst_nodata)
        rasterio.warp.reproject(
            source=self._obj.values,
            destination=dst_data,
            src_transform=src_affine,
            src_crs=self.crs,
            src_nodata=src_nodata,
            dst_transform=dst_affine,
            dst_crs=dst_crs,
            dst_nodata=dst_nodata,
            resampling=resampling,
        )
        # add necessary attributes
        new_attrs = _generate_attrs(self._obj, dst_nodata)
        # make sure dimensions with coordinates renamed to x,y
        dst_dims = []
        for dim in self._obj.dims:
            if dim == self.x_dim:
                dst_dims.append("x")
            elif dim == self.y_dim:
                dst_dims.append("y")
            else:
                dst_dims.append(dim)
        xda = xarray.DataArray(
            name=self._obj.name,
            data=dst_data,
            coords=_make_coords(self._obj, dst_affine, dst_width, dst_height),
            dims=tuple(dst_dims),
            attrs=new_attrs,
        )
        xda.encoding = self._obj.encoding
        xda.rio.write_transform(dst_affine, inplace=True)
        xda.rio.write_crs(dst_crs, inplace=True)
        xda.rio.write_coordinate_system(inplace=True)
        return xda
示例#5
0
    def reproject(
        self,
        dst_crs,
        resolution=None,
        shape=None,
        transform=None,
        resampling=Resampling.nearest,
        nodata=None,
        **kwargs,
    ):
        """
        Reproject :obj:`xarray.DataArray` objects

        Powered by :func:`rasterio.warp.reproject`

        .. note:: Only 2D/3D arrays with dimensions 'x'/'y' are currently supported.
            Requires either a grid mapping variable with 'spatial_ref' or
            a 'crs' attribute to be set containing a valid CRS.
            If using a WKT (e.g. from spatiareference.org), make sure it is an OGC WKT.

        .. versionadded:: 0.0.27 shape
        .. versionadded:: 0.0.28 transform
        .. versionadded:: 0.5.0 nodata, kwargs

        Parameters
        ----------
        dst_crs: str
            OGC WKT string or Proj.4 string.
        resolution: float or tuple(float, float), optional
            Size of a destination pixel in destination projection units
            (e.g. degrees or metres).
        shape: tuple(int, int), optional
            Shape of the destination in pixels (dst_height, dst_width). Cannot be used
            together with resolution.
        transform: Affine, optional
            The destination transform.
        resampling: rasterio.enums.Resampling, optional
            See :func:`rasterio.warp.reproject` for more details.
        nodata: float, optional
            The nodata value used to initialize the destination;
            it will remain in all areas not covered by the reprojected source.
            Defaults to the nodata value of the source image if none provided
            and exists or attempts to find an appropriate value by dtype.
        **kwargs: dict
            Additional keyword arguments to pass into :func:`rasterio.warp.reproject`.
            To override:
            - src_transform: `rio.write_transform`
            - src_crs: `rio.write_crs`
            - src_nodata: `rio.write_nodata`


        Returns
        -------
        :obj:`xarray.DataArray`:
            The reprojected DataArray.
        """
        if resolution is not None and (shape is not None
                                       or transform is not None):
            raise RioXarrayError(
                "resolution cannot be used with shape or transform.")
        if self.crs is None:
            raise MissingCRS(
                "CRS not found. Please set the CRS with 'rio.write_crs()'."
                f"{_get_data_var_message(self._obj)}")
        gcps = self.get_gcps()
        if gcps:
            kwargs.setdefault("gcps", gcps)

        src_affine = None if "gcps" in kwargs else self.transform(recalc=True)
        if transform is None:
            dst_affine, dst_width, dst_height = _make_dst_affine(
                self._obj, self.crs, dst_crs, resolution, shape, **kwargs)
        else:
            dst_affine = transform
            if shape is not None:
                dst_height, dst_width = shape
            else:
                dst_height, dst_width = self.shape

        dst_data = self._create_dst_data(dst_height, dst_width)

        dst_nodata = self._get_dst_nodata(nodata)

        rasterio.warp.reproject(
            source=self._obj.values,
            destination=dst_data,
            src_transform=src_affine,
            src_crs=self.crs,
            src_nodata=self.nodata,
            dst_transform=dst_affine,
            dst_crs=dst_crs,
            dst_nodata=dst_nodata,
            resampling=resampling,
            **kwargs,
        )
        # add necessary attributes
        new_attrs = _generate_attrs(self._obj, dst_nodata)
        # make sure dimensions with coordinates renamed to x,y
        dst_dims = []
        for dim in self._obj.dims:
            if dim == self.x_dim:
                dst_dims.append("x")
            elif dim == self.y_dim:
                dst_dims.append("y")
            else:
                dst_dims.append(dim)
        xda = xarray.DataArray(
            name=self._obj.name,
            data=dst_data,
            coords=_make_coords(self._obj, dst_affine, dst_width, dst_height),
            dims=tuple(dst_dims),
            attrs=new_attrs,
        )
        xda.encoding = self._obj.encoding
        xda.rio.write_transform(dst_affine, inplace=True)
        xda.rio.write_crs(dst_crs, inplace=True)
        xda.rio.write_coordinate_system(inplace=True)
        return xda