示例#1
0
Logistic_model = compose.Pipeline(
    ('features',
     compose.TransformerUnion(
         ('pipe1',
          compose.Pipeline(('drop_non_features',
                            compose.Discard('body', 'date', 'subject', 'text',
                                            'title', 'title_clean')),
                           ('scale', preprocessing.StandardScaler()))),
         ('pipe2',
          compose.Pipeline(
              ('drop_non_featuress',
               compose.Discard('body', 'body_len', 'body_num', 'date',
                               'punct%', 'subject', 'text', 'title',
                               'title_len', 'title_num')),
              ('tfidf', feature_extraction.TFIDF(on='title_clean')))))),
    ('modeling', linear_model.LogisticRegression()))

#metric = metrics.Accuracy()

#evaluate.progressive_val_score(dataset_tuple_a, model, metric)

#model.predict_proba_one(z)

#model.predict_one(z)

#print(Logistic_model.draw())

metric = metrics.ROCAUC()

train1 = train[:]
示例#2
0
        submodule = f"river.{submodule}"

        for _, obj in inspect.getmembers(importlib.import_module(submodule),
                                         is_estimator):
            if issubclass(obj, ignored):
                continue
            params = obj._unit_test_params()
            yield obj(**params)


@pytest.mark.parametrize(
    "estimator, check",
    [
        pytest.param(estimator, check, id=f"{estimator}:{check.__name__}")
        for estimator in list(get_all_estimators()) + [
            feature_extraction.TFIDF(),
            linear_model.LogisticRegression(),
            preprocessing.StandardScaler() | linear_model.LinearRegression(),
            preprocessing.StandardScaler() | linear_model.PAClassifier(),
            (preprocessing.StandardScaler()
             | multiclass.OneVsRestClassifier(
                 linear_model.LogisticRegression())),
            (preprocessing.StandardScaler()
             | multiclass.OneVsRestClassifier(linear_model.PAClassifier())),
            naive_bayes.GaussianNB(),
            preprocessing.StandardScaler(),
            cluster.KMeans(n_clusters=5, seed=42),
            preprocessing.MinMaxScaler(),
            preprocessing.MinMaxScaler() + preprocessing.StandardScaler(),
            feature_extraction.PolynomialExtender(),
            (feature_extraction.PolynomialExtender()
示例#3
0
train = train_tuple[:]

test = test_tuple[:]

#Passive Aggressive Classifier
PA_model = compose.Pipeline(
    ('features',
     compose.TransformerUnion(
         ('pipe1',
          compose.Pipeline(('select_numeric_features',
                            compose.Select('length', 'punct%', 'similarity')),
                           ('scale', preprocessing.MinMaxScaler()))),
         ('pipe2',
          compose.Pipeline(
              ('select_text_features', compose.Select('content')),
              ('tfidf', feature_extraction.TFIDF(on='content')))))),
    ('modeling', linear_model.PAClassifier()))

metric = metrics.ROCAUC()
train1 = train[:]
PA_score1 = []
y_pred_l1 = []
y_l1 = []
for x, y in train1:
    x = text_processing(x)
    y_pred = PA_model.predict_one(x)
    y_pred_l1.append(y_pred)
    y_l1.append(y)
    PA_model.learn_one(x, y)
    metric.update(y, y_pred)
    PA_score1.append(float(str(metric).split(':')[1]))