def __init__(self, cm: "metrics.ConfusionMatrix" = None): self.cm = metrics.ConfusionMatrix() if cm is None else cm self.accuracy = metrics.Accuracy(cm=self.cm) self.kappa = metrics.CohenKappa(cm=self.cm) self.kappa_m = metrics.KappaM(cm=self.cm) self.kappa_t = metrics.KappaT(cm=self.cm) self.recall = metrics.Recall(cm=self.cm) self.micro_recall = metrics.MicroRecall(cm=self.cm) self.macro_recall = metrics.MacroRecall(cm=self.cm) self.precision = metrics.Precision(cm=self.cm) self.micro_precision = metrics.MicroPrecision(cm=self.cm) self.macro_precision = metrics.MacroPrecision(cm=self.cm) self.f1 = metrics.F1(cm=self.cm) self.micro_f1 = metrics.MicroF1(cm=self.cm) self.macro_f1 = metrics.MacroF1(cm=self.cm) self.geometric_mean = metrics.GeometricMean(cm=self.cm)
def __init__(self, step, name): self.name = name self.optimizer = SynchronousSGD(0.01, name, None) self.model = compose.Pipeline( preprocessing.StandardScaler(), linear_model.LogisticRegression(self.optimizer)) self.metrics = [ metrics.Accuracy(), metrics.MAE(), metrics.RMSE(), metrics.Precision(), metrics.Recall() ] self.count = 0 if step is None: self.step = 50 else: self.step = int(step)
def partial(f, **kwargs): return functools.update_wrapper(functools.partial(f, **kwargs), f) TEST_CASES = [ (metrics.Accuracy(), sk_metrics.accuracy_score), (metrics.Precision(), sk_metrics.precision_score), (metrics.MacroPrecision(), partial(sk_metrics.precision_score, average='macro')), (metrics.MicroPrecision(), partial(sk_metrics.precision_score, average='micro')), (metrics.WeightedPrecision(), partial(sk_metrics.precision_score, average='weighted')), (metrics.Recall(), sk_metrics.recall_score), (metrics.MacroRecall(), partial(sk_metrics.recall_score, average='macro')), (metrics.MicroRecall(), partial(sk_metrics.recall_score, average='micro')), (metrics.WeightedRecall(), partial(sk_metrics.recall_score, average='weighted')), (metrics.FBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5)), (metrics.MacroFBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5, average='macro')), (metrics.MicroFBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5, average='micro')), (metrics.WeightedFBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5, average='weighted')), (metrics.F1(), sk_metrics.f1_score), (metrics.MacroF1(), partial(sk_metrics.f1_score, average='macro')), (metrics.MicroF1(), partial(sk_metrics.f1_score, average='micro')), (metrics.WeightedF1(), partial(sk_metrics.f1_score, average='weighted')),
zero_division=0)), ( metrics.MacroPrecision(), partial(sk_metrics.precision_score, average="macro", zero_division=0), ), ( metrics.MicroPrecision(), partial(sk_metrics.precision_score, average="micro", zero_division=0), ), ( metrics.WeightedPrecision(), partial(sk_metrics.precision_score, average="weighted", zero_division=0), ), (metrics.Recall(), partial(sk_metrics.recall_score, zero_division=0)), (metrics.MacroRecall(), partial(sk_metrics.recall_score, average="macro", zero_division=0)), (metrics.MicroRecall(), partial(sk_metrics.recall_score, average="micro", zero_division=0)), ( metrics.WeightedRecall(), partial(sk_metrics.recall_score, average="weighted", zero_division=0), ), (metrics.FBeta(beta=0.5), partial(sk_metrics.fbeta_score, beta=0.5, zero_division=0)), ( metrics.MacroFBeta(beta=0.5), partial(sk_metrics.fbeta_score, beta=0.5, average="macro",
def __init__(self, beta: float, cm=None, pos_val=True): super().__init__(cm, pos_val) self.beta = beta self.precision = metrics.Precision(self.cm, self.pos_val) self.recall = metrics.Recall(self.cm, self.pos_val)