示例#1
0
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params.use_her:
            self.her = build_her(self.hyper_params.her)
            print(f"[INFO] Build {str(self.her)}.")

            if self.hyper_params.desired_states_from_demo:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1, ))
            demo = self.her.generate_demo_transitions(demo)

            if not self.her.is_goal_in_state:
                self.state_dim = (self.state_dim[0] * 2, )
        else:
            self.her = None

        if not self.args.test:
            # Replay buffers
            demo_batch_size = self.hyper_params.demo_batch_size
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       demo_batch_size)

            # set hyper parameters
            self.lambda2 = 1.0 / demo_batch_size
示例#2
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.is_test:
            # replay memory for a single step
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
            )
            self.memory = PrioritizedBufferWrapper(
                self.memory, alpha=self.hyper_params.per_alpha)

            # replay memory for multi-steps
            if self.use_n_step:
                self.memory_n = ReplayBuffer(
                    self.hyper_params.buffer_size,
                    self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                )

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.n,
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)
示例#3
0
    def _initialize(self):
        """Initialize non-common things."""
        self.per_beta = self.hyper_params.per_beta
        self.use_n_step = self.hyper_params.n_step > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )
示例#4
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # load demo replay memory
            demos = self._load_demos()

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params.buffer_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )
示例#5
0
 def _initialize(self):
     """Initialize non-common things."""
     if not self.args.test:
         # replay memory
         self.memory = ReplayBuffer(
             self.hyper_params.buffer_size, self.hyper_params.batch_size
         )
示例#6
0
    def _initialize(self):
        """Initialize non-common things."""
        self.per_beta = self.hyper_params.per_beta

        self.use_n_step = self.hyper_params.n_step > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    max_len=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory for a single step
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
            )
            self.memory = PrioritizedBufferWrapper(
                self.memory, alpha=self.hyper_params.per_alpha)

        self.learner_cfg.type = "DDPGfDLearner"
        self.learner = build_learner(self.learner_cfg)
示例#7
0
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params.use_her:
            self.her = build_her(self.hyper_params.her)
            print(f"[INFO] Build {str(self.her)}.")

            if self.hyper_params.desired_states_from_demo:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1, ))
            demo = self.her.generate_demo_transitions(demo)

            if not self.her.is_goal_in_state:
                self.state_dim = (self.state_dim[0] * 2, )
        else:
            self.her = None

        if not self.args.test:
            # Replay buffers
            demo_batch_size = self.hyper_params.demo_batch_size
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params.sac_buffer_size,
                                       demo_batch_size)

            # set hyper parameters
            self.hyper_params["lambda2"] = 1.0 / demo_batch_size

        self.args.cfg_path = self.args.offer_cfg_path
        self.args.load_from = self.args.load_offer_from
        self.hyper_params.buffer_size = self.hyper_params.sac_buffer_size
        self.hyper_params.batch_size = self.hyper_params.sac_batch_size

        self.learner_cfg.type = "BCSACLearner"
        self.learner_cfg.hyper_params = self.hyper_params

        self.learner = build_learner(self.learner_cfg)

        del self.hyper_params.buffer_size
        del self.hyper_params.batch_size

        # init stack
        self.stack_size = self.args.stack_size
        self.stack_buffer = deque(maxlen=self.args.stack_size)
        self.stack_buffer_2 = deque(maxlen=self.args.stack_size)

        self.scores = list()
        self.utilities = list()
        self.rounds = list()
        self.opp_utilities = list()
示例#8
0
    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        log_cfg: ConfigDict,
        hyper_params: ConfigDict,
        backbone: ConfigDict,
        head: ConfigDict,
        optim_cfg: ConfigDict,
        noise_cfg: ConfigDict,
    ):
        """Initialize.

        Args:
            env (gym.Env): openAI Gym environment
            args (argparse.Namespace): arguments including hyperparameters and training settings

        """
        Agent.__init__(self, env, args, log_cfg)

        self.curr_state = np.zeros((1, ))
        self.total_step = 0
        self.episode_step = 0
        self.update_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.noise_cfg = noise_cfg
        self.backbone_cfg = backbone
        self.head_cfg = head
        self.optim_cfg = optim_cfg

        self.state_dim = self.env.observation_space.shape
        self.action_dim = self.env.action_space.shape[0]

        # noise instance to make randomness of action
        self.exploration_noise = GaussianNoise(self.action_dim,
                                               noise_cfg.exploration_noise,
                                               noise_cfg.exploration_noise)

        self.target_policy_noise = GaussianNoise(
            self.action_dim,
            noise_cfg.target_policy_noise,
            noise_cfg.target_policy_noise,
        )

        if not self.args.test:
            # replay memory
            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       self.hyper_params.batch_size)

        self._init_network()
示例#9
0
    def __init__(
        self,
        env: gym.Env,
        env_info: ConfigDict,
        args: argparse.Namespace,
        hyper_params: ConfigDict,
        learner_cfg: ConfigDict,
        noise_cfg: ConfigDict,
        log_cfg: ConfigDict,
    ):
        """Initialize.

        Args:
            env (gym.Env): openAI Gym environment
            args (argparse.Namespace): arguments including hyperparameters and training settings

        """
        Agent.__init__(self, env, env_info, args, log_cfg)

        self.curr_state = np.zeros((1,))
        self.total_step = 0
        self.episode_step = 0
        self.update_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.learner_cfg = learner_cfg
        self.learner_cfg.args = self.args
        self.learner_cfg.env_info = self.env_info
        self.learner_cfg.hyper_params = self.hyper_params
        self.learner_cfg.log_cfg = self.log_cfg
        self.learner_cfg.noise_cfg = noise_cfg
        self.learner_cfg.device = device

        # noise instance to make randomness of action
        self.exploration_noise = GaussianNoise(
            self.env_info.action_space.shape[0],
            noise_cfg.exploration_noise,
            noise_cfg.exploration_noise,
        )

        if not self.args.test:
            # replay memory
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size, self.hyper_params.batch_size
            )

        self.learner = build_learner(self.learner_cfg)
示例#10
0
    def _spawn(self):
        """Intialize distributed worker, learner and centralized replay buffer."""
        replay_buffer = ReplayBuffer(
            self.hyper_params.buffer_size,
            self.hyper_params.batch_size,
        )
        per_buffer = PrioritizedBufferWrapper(
            replay_buffer, alpha=self.hyper_params.per_alpha)
        self.global_buffer = ApeXBufferWrapper.remote(per_buffer, self.args,
                                                      self.hyper_params,
                                                      self.comm_cfg)

        learner = build_learner(self.learner_cfg)
        self.learner = ApeXLearnerWrapper.remote(learner, self.comm_cfg)

        state_dict = learner.get_state_dict()
        worker_build_args = dict(args=self.args, state_dict=state_dict)

        self.workers = []
        self.num_workers = self.hyper_params.num_workers
        for rank in range(self.num_workers):
            worker_build_args["rank"] = rank
            worker = build_worker(self.worker_cfg,
                                  build_args=worker_build_args)
            apex_worker = ApeXWorkerWrapper.remote(worker, self.args,
                                                   self.comm_cfg)
            self.workers.append(apex_worker)

        self.logger = build_logger(self.logger_cfg)

        self.processes = self.workers + [
            self.learner, self.global_buffer, self.logger
        ]
示例#11
0
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.hyper_params.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params.use_her:
            self.her = build_her(self.hyper_params.her)
            print(f"[INFO] Build {str(self.her)}.")

            if self.hyper_params.desired_states_from_demo:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1, ))
            demo = self.her.generate_demo_transitions(demo)

            if not self.her.is_goal_in_state:
                self.env_info.observation_space.shape = (
                    self.self.env_info.observation_space.shape[0] * 2, )
        else:
            self.her = None

        if not self.is_test:
            # Replay buffers
            demo_batch_size = self.hyper_params.demo_batch_size
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       self.hyper_params.batch_size)

            # set hyper parameters
            self.hyper_params["lambda2"] = 1.0 / demo_batch_size

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            noise_cfg=self.noise_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.shape[0],
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)
示例#12
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory for a single step
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                alpha=self.hyper_params.per_alpha,
            )

            # replay memory for multi-steps
            if self.use_n_step:
                self.memory_n = ReplayBuffer(
                    self.hyper_params.buffer_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                )
示例#13
0
    def _initialize(self):
        """Initialize non-common things."""
        self.per_beta = self.hyper_params.per_beta
        self.use_n_step = self.hyper_params.n_step > 1

        if not self.is_test:
            # load demo replay memory
            with open(self.hyper_params.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    max_len=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory for a single step
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
            )
            self.memory = PrioritizedBufferWrapper(
                self.memory,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            noise_cfg=self.noise_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.shape[0],
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)
示例#14
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.is_test:
            # replay memory
            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       self.hyper_params.batch_size)

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            noise_cfg=self.noise_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.shape[0],
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)
示例#15
0
    def _initialize(self):
        """Initialize non-common things."""
        if not self.is_test:
            # load demo replay memory
            demos = self._load_demos()

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                self.memory_n = ReplayBuffer(
                    max_len=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
            )
            self.memory = PrioritizedBufferWrapper(
                self.memory,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.n,
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner_cfg.type = "DQfDLearner"
        self.learner = build_learner(self.learner_cfg, build_args)
示例#16
0
def test_uniform_sample(buffer_length=32, batch_size=8):
    """Test whether transitions are uniformly sampled from replay buffer."""

    n_repeat = 10000

    buffer = ReplayBuffer(max_len=buffer_length, batch_size=batch_size)

    sampled_lst = [0] * buffer.max_len
    # sampling index for the n_repeat times
    for _ in range(n_repeat):
        indices = generate_sample_idx(buffer)
        for idx in indices:
            sampled_lst[int(idx)] += 1 / n_repeat

    assert check_uniform(sampled_lst), "This distribution is not uniform."
def generate_prioritized_buffer(
    buffer_length: int, batch_size: int, idx_lst=None, prior_lst=None
) -> Tuple[PrioritizedBufferWrapper, List]:
    """Generate Prioritized Replay Buffer with random Prior."""
    buffer = ReplayBuffer(max_len=buffer_length, batch_size=batch_size)
    prioritized_buffer = PrioritizedBufferWrapper(buffer)
    priority = np.random.randint(10, size=buffer_length)
    for i, j in enumerate(priority):
        prioritized_buffer.sum_tree[i] = j
    if idx_lst:
        for i, j in list(zip(idx_lst, prior_lst)):
            priority[i] = j
            prioritized_buffer.sum_tree[i] = j

    prop_lst = [i / sum(priority) for i in priority]

    return prioritized_buffer, prop_lst
示例#18
0
class SACfDAgent(SACAgent):
    """SAC agent interacting with environment.

    Attrtibutes:
        memory (PrioritizedReplayBuffer): replay memory
        beta (float): beta parameter for prioritized replay buffer
        use_n_step (bool): whether or not to use n-step returns

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        self.per_beta = self.hyper_params.per_beta
        self.use_n_step = self.hyper_params.n_step > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    # pylint: disable=too-many-statements
    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        self.update_step += 1

        experiences = self.memory.sample(self.per_beta)
        (
            states,
            actions,
            rewards,
            next_states,
            dones,
            weights,
            indices,
            eps_d,
        ) = experiences
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)

        # train alpha
        if self.hyper_params.auto_entropy_tuning:
            alpha_loss = torch.mean(
                (-self.log_alpha *
                 (log_prob + self.target_entropy).detach()) * weights)

            self.alpha_optim.zero_grad()
            alpha_loss.backward()
            self.alpha_optim.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params.w_entropy

        # Q function loss
        masks = 1 - dones
        gamma = self.hyper_params.gamma
        states_actions = torch.cat((states, actions), dim=-1)
        q_1_pred = self.qf_1(states_actions)
        q_2_pred = self.qf_2(states_actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params.gamma * v_target * masks
        qf_1_loss = torch.mean((q_1_pred - q_target.detach()).pow(2) * weights)
        qf_2_loss = torch.mean((q_2_pred - q_target.detach()).pow(2) * weights)

        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            _, _, rewards, next_states, dones = experiences_n
            gamma = gamma**self.hyper_params.n_step
            masks = 1 - dones

            v_target = self.vf_target(next_states)
            q_target = rewards + gamma * v_target * masks
            qf_1_loss_n = torch.mean(
                (q_1_pred - q_target.detach()).pow(2) * weights)
            qf_2_loss_n = torch.mean(
                (q_2_pred - q_target.detach()).pow(2) * weights)

            # to update loss and priorities
            qf_1_loss = qf_1_loss + qf_1_loss_n * self.hyper_params.lambda1
            qf_2_loss = qf_2_loss + qf_2_loss_n * self.hyper_params.lambda1

        # V function loss
        states_actions = torch.cat((states, new_actions), dim=-1)
        v_pred = self.vf(states)
        q_pred = torch.min(self.qf_1(states_actions),
                           self.qf_2(states_actions))
        v_target = (q_pred - alpha * log_prob).detach()
        vf_loss_element_wise = (v_pred - v_target).pow(2)
        vf_loss = torch.mean(vf_loss_element_wise * weights)

        # train Q functions
        self.qf_1_optim.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optim.step()

        self.qf_2_optim.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optim.step()

        # train V function
        self.vf_optim.zero_grad()
        vf_loss.backward()
        self.vf_optim.step()

        if self.update_step % self.hyper_params.policy_update_freq == 0:
            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss_element_wise = alpha * log_prob - advantage
            actor_loss = torch.mean(actor_loss_element_wise * weights)

            # regularization
            mean_reg = self.hyper_params.w_mean_reg * mu.pow(2).mean()
            std_reg = self.hyper_params.w_std_reg * std.pow(2).mean()
            pre_activation_reg = self.hyper_params.w_pre_activation_reg * (
                pre_tanh_value.pow(2).sum(dim=-1).mean())
            actor_reg = mean_reg + std_reg + pre_activation_reg

            # actor loss + regularization
            actor_loss += actor_reg

            # train actor
            self.actor_optim.zero_grad()
            actor_loss.backward()
            self.actor_optim.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target,
                                     self.hyper_params.tau)

            # update priorities
            new_priorities = vf_loss_element_wise
            new_priorities += self.hyper_params.lambda3 * actor_loss_element_wise.pow(
                2)
            new_priorities += self.hyper_params.per_eps
            new_priorities = new_priorities.data.cpu().numpy().squeeze()
            new_priorities += eps_d
            self.memory.update_priorities(indices, new_priorities)

            # increase beta
            fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
            self.per_beta = self.per_beta + fraction * (1.0 - self.per_beta)
        else:
            actor_loss = torch.zeros(1)

        return (
            actor_loss.item(),
            qf_1_loss.item(),
            qf_2_loss.item(),
            vf_loss.item(),
            alpha_loss.item(),
        )

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        pretrain_step = self.hyper_params.pretrain_step
        print("[INFO] Pre-Train %d steps." % pretrain_step)
        for i_step in range(1, pretrain_step + 1):
            t_begin = time.time()
            loss = self.update_model()
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                log_value = (
                    0,
                    avg_loss,
                    0,
                    self.hyper_params.policy_update_freq,
                    t_end - t_begin,
                )
                self.write_log(log_value)
        print("[INFO] Pre-Train Complete!\n")
示例#19
0
class DDPGfDAgent(DDPGAgent):
    """ActorCritic interacting with environment.

    Attributes:
        memory (PrioritizedReplayBuffer): replay memory
        per_beta (float): beta parameter for prioritized replay buffer
        use_n_step (bool): whether or not to use n-step returns

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        self.per_beta = self.hyper_params.per_beta

        self.use_n_step = self.hyper_params.n_step > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    max_len=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory for a single step
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
            )
            self.memory = PrioritizedBufferWrapper(
                self.memory, alpha=self.hyper_params.per_alpha)

        self.learner_cfg.type = "DDPGfDLearner"
        self.learner = build_learner(self.learner_cfg)

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    def sample_experience(self) -> Tuple[torch.Tensor, ...]:
        experience_1 = self.memory.sample(self.per_beta)
        if self.use_n_step:
            indices = experience_1[-2]
            experience_n = self.memory_n.sample(indices)
            return numpy2floattensor(experience_1), numpy2floattensor(
                experience_n)

        return numpy2floattensor(experience_1)

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        pretrain_step = self.hyper_params.pretrain_step
        print("[INFO] Pre-Train %d step." % pretrain_step)
        for i_step in range(1, pretrain_step + 1):
            t_begin = time.time()
            experience = self.sample_experience()
            info = self.learner.update_model(experience)
            loss = info[0:2]
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                log_value = (0, avg_loss, 0, t_end - t_begin)
                self.write_log(log_value)
        print("[INFO] Pre-Train Complete!\n")

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            self.set_wandb()
            # wandb.watch([self.actor, self.critic], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            self.episode_step = 0
            losses = list()

            t_begin = time.time()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                if len(self.memory) >= self.hyper_params.batch_size:
                    for _ in range(self.hyper_params.multiple_update):
                        experience = self.sample_experience()
                        info = self.learner.update_model(experience)
                        loss = info[0:2]
                        indices, new_priorities = info[2:4]
                        losses.append(loss)  # for logging
                        self.memory.update_priorities(indices, new_priorities)

                # increase priority beta
                fraction = min(
                    float(self.i_episode) / self.args.episode_num, 1.0)
                self.per_beta = self.per_beta + fraction * (1.0 -
                                                            self.per_beta)

                state = next_state
                score += reward

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            # logging
            if losses:
                avg_loss = np.vstack(losses).mean(axis=0)
                log_value = (self.i_episode, avg_loss, score, avg_time_cost)
                self.write_log(log_value)
                losses.clear()

            if self.i_episode % self.args.save_period == 0:
                self.learner.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.learner.save_params(self.i_episode)
        self.interim_test()
示例#20
0
class BCSACAgent(SACAgent):
    """BC with SAC agent interacting with environment.

    Attrtibutes:
        her (HER): hinsight experience replay
        transitions_epi (list): transitions per episode (for HER)
        desired_state (np.ndarray): desired state of current episode
        memory (ReplayBuffer): replay memory
        demo_memory (ReplayBuffer): replay memory for demo
        lambda2 (float): proportion of BC loss

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.hyper_params.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params.use_her:
            self.her = build_her(self.hyper_params.her)
            print(f"[INFO] Build {str(self.her)}.")

            if self.hyper_params.desired_states_from_demo:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1,))
            demo = self.her.generate_demo_transitions(demo)

            if not self.her.is_goal_in_state:
                self.state_dim = (self.state_dim[0] * 2,)
        else:
            self.her = None

        if not self.is_test:
            # Replay buffers
            demo_batch_size = self.hyper_params.demo_batch_size
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params.buffer_size, demo_batch_size)

            # set hyper parameters
            self.hyper_params["lambda2"] = 1.0 / demo_batch_size

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.shape[0],
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)

    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        if self.hyper_params.use_her:
            self.desired_state = self.her.get_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)
        state = numpy2floattensor(state, self.learner.device)
        return state

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        if self.hyper_params.use_her:
            self.transitions_epi.append(transition)
            done = transition[-1] or self.episode_step == self.max_episode_steps
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi,
                    self.desired_state,
                    self.hyper_params.success_score,
                )
                self.memory.extend(transitions)
                self.transitions_epi.clear()
        else:
            self.memory.add(transition)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, policy_update_freq, avg_time_cost = log_value
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode_step %d, total step %d, total score: %d\n"
            "total loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f "
            "vf_loss: %.3f alpha_loss: %.3f n_qf_mask: %d (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0] * policy_update_freq,  # actor loss
                loss[1],  # qf_1 loss
                loss[2],  # qf_2 loss
                loss[3],  # vf loss
                loss[4],  # alpha loss
                loss[5],  # n_qf_mask
                avg_time_cost,
            )
        )

        if self.is_log:
            wandb.log(
                {
                    "score": score,
                    "total loss": total_loss,
                    "actor loss": loss[0] * policy_update_freq,
                    "qf_1 loss": loss[1],
                    "qf_2 loss": loss[2],
                    "vf loss": loss[3],
                    "alpha loss": loss[4],
                    "time per each step": avg_time_cost,
                }
            )

    def train(self):
        """Train the agent."""
        # logger
        if self.is_log:
            self.set_wandb()
            # wandb.watch([self.actor, self.vf, self.qf_1, self.qf_2], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            self.episode_step = 0
            loss_episode = list()

            t_begin = time.time()

            while not done:
                if self.is_render and self.i_episode >= self.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                state = next_state
                score += reward

                # training
                if len(self.memory) >= self.hyper_params.batch_size:
                    for _ in range(self.hyper_params.multiple_update):
                        experience = self.memory.sample()
                        demos = self.demo_memory.sample()
                        experience, demo = (
                            numpy2floattensor(experience, self.learner.device),
                            numpy2floattensor(demos, self.learner.device),
                        )
                        loss = self.learner.update_model(experience, demo)
                        loss_episode.append(loss)  # for logging

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            # logging
            if loss_episode:
                avg_loss = np.vstack(loss_episode).mean(axis=0)
                log_value = (
                    self.i_episode,
                    avg_loss,
                    score,
                    self.hyper_params.policy_update_freq,
                    avg_time_cost,
                )
                self.write_log(log_value)

            if self.i_episode % self.save_period == 0:
                self.learner.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.learner.save_params(self.i_episode)
        self.interim_test()
示例#21
0
class DQNAgent(Agent):
    """DQN interacting with environment.

    Attribute:
        env (gym.Env): openAI Gym environment
        hyper_params (ConfigDict): hyper-parameters
        log_cfg (ConfigDict): configuration for saving log and checkpoint
        network_cfg (ConfigDict): config of network for training agent
        optim_cfg (ConfigDict): config of optimizer
        state_dim (int): state size of env
        action_dim (int): action size of env
        memory (PrioritizedReplayBuffer): replay memory
        curr_state (np.ndarray): temporary storage of the current state
        total_step (int): total step number
        episode_step (int): step number of the current episode
        i_episode (int): current episode number
        epsilon (float): parameter for epsilon greedy policy
        n_step_buffer (deque): n-size buffer to calculate n-step returns
        per_beta (float): beta parameter for prioritized replay buffer
        use_n_step (bool): whether or not to use n-step returns

    """
    def __init__(
        self,
        env: gym.Env,
        env_info: ConfigDict,
        hyper_params: ConfigDict,
        learner_cfg: ConfigDict,
        log_cfg: ConfigDict,
        is_test: bool,
        load_from: str,
        is_render: bool,
        render_after: int,
        is_log: bool,
        save_period: int,
        episode_num: int,
        max_episode_steps: int,
        interim_test_num: int,
    ):
        """Initialize."""
        Agent.__init__(
            self,
            env,
            env_info,
            log_cfg,
            is_test,
            load_from,
            is_render,
            render_after,
            is_log,
            save_period,
            episode_num,
            max_episode_steps,
            interim_test_num,
        )

        self.curr_state = np.zeros(1)
        self.episode_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.learner_cfg = learner_cfg

        self.per_beta = hyper_params.per_beta
        self.use_n_step = hyper_params.n_step > 1

        if self.learner_cfg.head.configs.use_noisy_net:
            self.max_epsilon = 0.0
            self.min_epsilon = 0.0
            self.epsilon = 0.0
        else:
            self.max_epsilon = hyper_params.max_epsilon
            self.min_epsilon = hyper_params.min_epsilon
            self.epsilon = hyper_params.max_epsilon

        self._initialize()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.is_test:
            # replay memory for a single step
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
            )
            self.memory = PrioritizedBufferWrapper(
                self.memory, alpha=self.hyper_params.per_alpha)

            # replay memory for multi-steps
            if self.use_n_step:
                self.memory_n = ReplayBuffer(
                    self.hyper_params.buffer_size,
                    self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                )

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.n,
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state

        # epsilon greedy policy
        if not self.is_test and self.epsilon > np.random.random():
            selected_action = np.array(self.env.action_space.sample())
        else:
            with torch.no_grad():
                state = self._preprocess_state(state)
                selected_action = self.learner.dqn(state).argmax()
            selected_action = selected_action.detach().cpu().numpy()
        return selected_action

    # pylint: disable=no-self-use
    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        state = numpy2floattensor(state, self.learner.device)
        return state

    def step(self,
             action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.is_test:
            # if the last state is not a terminal state, store done as false
            done_bool = False if self.episode_step == self.max_episode_steps else done

            transition = (self.curr_state, action, reward, next_state,
                          done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done, info

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, avg_time_cost = log_value
        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %f\n"
            "epsilon: %f, loss: %f, avg q-value: %f (spent %.6f sec/step)\n" %
            (
                i,
                self.episode_step,
                self.total_step,
                score,
                self.epsilon,
                loss[0],
                loss[1],
                avg_time_cost,
            ))

        if self.is_log:
            wandb.log({
                "score": score,
                "epsilon": self.epsilon,
                "dqn loss": loss[0],
                "avg q values": loss[1],
                "time per each step": avg_time_cost,
                "total_step": self.total_step,
            })

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def sample_experience(self) -> Tuple[torch.Tensor, ...]:
        """Sample experience from replay buffer."""
        experiences_1 = self.memory.sample(self.per_beta)
        experiences_1 = (
            numpy2floattensor(experiences_1[:6], self.learner.device) +
            experiences_1[6:])

        if self.use_n_step:
            indices = experiences_1[-2]
            experiences_n = self.memory_n.sample(indices)
            return (
                experiences_1,
                numpy2floattensor(experiences_n, self.learner.device),
            )

        return experiences_1

    def train(self):
        """Train the agent."""
        # logger
        if self.is_log:
            self.set_wandb()
            # wandb.watch([self.dqn], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.episode_num + 1):
            state = self.env.reset()
            self.episode_step = 0
            losses = list()
            done = False
            score = 0

            t_begin = time.time()

            while not done:
                if self.is_render and self.i_episode >= self.render_after:
                    self.env.render()
                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                if len(self.memory) >= self.hyper_params.update_starts_from:
                    if self.total_step % self.hyper_params.train_freq == 0:
                        for _ in range(self.hyper_params.multiple_update):
                            experience = self.sample_experience()
                            info = self.learner.update_model(experience)
                            loss = info[0:2]
                            indices, new_priorities = info[2:4]
                            losses.append(loss)  # for logging
                            self.memory.update_priorities(
                                indices, new_priorities)

                    # decrease epsilon
                    self.epsilon = max(
                        self.epsilon - (self.max_epsilon - self.min_epsilon) *
                        self.hyper_params.epsilon_decay,
                        self.min_epsilon,
                    )

                    # increase priority beta
                    fraction = min(
                        float(self.i_episode) / self.episode_num, 1.0)
                    self.per_beta = self.per_beta + fraction * (1.0 -
                                                                self.per_beta)

                state = next_state
                score += reward

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            if losses:
                avg_loss = np.vstack(losses).mean(axis=0)
                log_value = (self.i_episode, avg_loss, score, avg_time_cost)
                self.write_log(log_value)

            if self.i_episode % self.save_period == 0:
                self.learner.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.learner.save_params(self.i_episode)
        self.interim_test()
示例#22
0
def generate_sample_idx(buffer: ReplayBuffer) -> int:
    """Generate indices to test whether sampled uniformly or not."""
    for i in range(buffer.max_len):
        buffer.add(generate_transition(i))
    _, _, idx, _, _ = buffer.sample()
    return idx
示例#23
0
class DQfDAgent(DQNAgent):
    """DQN interacting with environment.

    Attribute:
        memory (PrioritizedReplayBuffer): replay memory

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # load demo replay memory
            demos = self._load_demos()

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma)

                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params.buffer_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )

    def _load_demos(self) -> list:
        """Load expert's demonstrations."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demos = pickle.load(f)

        return demos

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences_1 = self.memory.sample()
        weights, indices, eps_d = experiences_1[-3:]
        actions = experiences_1[1]

        # 1 step loss
        gamma = self.hyper_params.gamma
        dq_loss_element_wise, q_values = self._get_dqn_loss(
            experiences_1, gamma)
        dq_loss = torch.mean(dq_loss_element_wise * weights)

        # n step loss
        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            gamma = self.hyper_params.gamma**self.hyper_params.n_step
            dq_loss_n_element_wise, q_values_n = self._get_dqn_loss(
                experiences_n, gamma)

            # to update loss and priorities
            q_values = 0.5 * (q_values + q_values_n)
            dq_loss_element_wise += dq_loss_n_element_wise * self.hyper_params.lambda1
            dq_loss = torch.mean(dq_loss_element_wise * weights)

        # supervised loss using demo for only demo transitions
        demo_idxs = np.where(eps_d != 0.0)
        n_demo = demo_idxs[0].size
        if n_demo != 0:  # if 1 or more demos are sampled
            # get margin for each demo transition
            action_idxs = actions[demo_idxs].long()
            margin = torch.ones(q_values.size()) * self.hyper_params.margin
            margin[demo_idxs, action_idxs] = 0.0  # demo actions have 0 margins
            margin = margin.to(device)

            # calculate supervised loss
            demo_q_values = q_values[demo_idxs, action_idxs].squeeze()
            supervised_loss = torch.max(q_values + margin, dim=-1)[0]
            supervised_loss = supervised_loss[demo_idxs] - demo_q_values
            supervised_loss = torch.mean(
                supervised_loss) * self.hyper_params.lambda2
        else:  # no demo sampled
            supervised_loss = torch.zeros(1, device=device)

        # q_value regularization
        q_regular = torch.norm(q_values, 2).mean() * self.hyper_params.w_q_reg

        # total loss
        loss = dq_loss + supervised_loss + q_regular

        # train dqn
        self.dqn_optim.zero_grad()
        loss.backward()
        clip_grad_norm_(self.dqn.parameters(), self.hyper_params.gradient_clip)
        self.dqn_optim.step()

        # update target networks
        common_utils.soft_update(self.dqn, self.dqn_target,
                                 self.hyper_params.tau)

        # update priorities in PER
        loss_for_prior = dq_loss_element_wise.detach().cpu().numpy().squeeze()
        new_priorities = loss_for_prior + self.hyper_params.per_eps
        new_priorities += eps_d
        self.memory.update_priorities(indices, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.per_beta: float = self.per_beta + fraction * (1.0 - self.per_beta)

        if self.hyper_params.use_noisy_net:
            self.dqn.reset_noise()
            self.dqn_target.reset_noise()

        return (
            loss.item(),
            dq_loss.item(),
            supervised_loss.item(),
            q_values.mean().item(),
            n_demo,
        )

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, avg_loss, score, avg_time_cost = log_value
        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %f\n"
            "epsilon: %f, total loss: %f, dq loss: %f, supervised loss: %f\n"
            "avg q values: %f, demo num in minibatch: %d (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                self.epsilon,
                avg_loss[0],
                avg_loss[1],
                avg_loss[2],
                avg_loss[3],
                avg_loss[4],
                avg_time_cost,
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "epsilon": self.epsilon,
                "total loss": avg_loss[0],
                "dq loss": avg_loss[1],
                "supervised loss": avg_loss[2],
                "avg q values": avg_loss[3],
                "demo num in minibatch": avg_loss[4],
                "time per each step": avg_time_cost,
            })

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        pretrain_step = self.hyper_params.pretrain_step
        print("[INFO] Pre-Train %d step." % pretrain_step)
        for i_step in range(1, pretrain_step + 1):
            t_begin = time.time()
            loss = self.update_model()
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                log_value = (0, avg_loss, 0.0, t_end - t_begin)
                self.write_log(log_value)
        print("[INFO] Pre-Train Complete!\n")
示例#24
0
class DDPGfDAgent(DDPGAgent):
    """ActorCritic interacting with environment.

    Attributes:
        memory (PrioritizedReplayBuffer): replay memory
        per_beta (float): beta parameter for prioritized replay buffer
        use_n_step (bool): whether or not to use n-step returns

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        self.per_beta = self.hyper_params.per_beta

        self.use_n_step = self.hyper_params.n_step > 1

        if not self.args.test:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demos = pickle.load(f)

            if self.use_n_step:
                demos, demos_n_step = common_utils.get_n_step_info_from_demo(
                    demos, self.hyper_params.n_step, self.hyper_params.gamma
                )

                # replay memory for multi-steps
                self.memory_n = ReplayBuffer(
                    buffer_size=self.hyper_params.buffer_size,
                    batch_size=self.hyper_params.batch_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                    demo=demos_n_step,
                )

            # replay memory for a single step
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                demo=demos,
                alpha=self.hyper_params.per_alpha,
                epsilon_d=self.hyper_params.per_eps_demo,
            )

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    def _get_critic_loss(
        self, experiences: Tuple[torch.Tensor, ...], gamma: float
    ) -> torch.Tensor:
        """Return element-wise critic loss."""
        states, actions, rewards, next_states, dones = experiences[:5]

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        next_actions = self.actor_target(next_states)
        next_states_actions = torch.cat((next_states, next_actions), dim=-1)
        next_values = self.critic_target(next_states_actions)
        curr_returns = rewards + gamma * next_values * masks
        curr_returns = curr_returns.to(device).detach()

        # train critic
        values = self.critic(torch.cat((states, actions), dim=-1))
        critic_loss_element_wise = (values - curr_returns).pow(2)

        return critic_loss_element_wise

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences_1 = self.memory.sample(self.per_beta)
        states, actions = experiences_1[:2]
        weights, indices, eps_d = experiences_1[-3:]
        gamma = self.hyper_params.gamma

        # train critic
        gradient_clip_ac = self.hyper_params.gradient_clip_ac
        gradient_clip_cr = self.hyper_params.gradient_clip_cr

        critic_loss_element_wise = self._get_critic_loss(experiences_1, gamma)
        critic_loss = torch.mean(critic_loss_element_wise * weights)

        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            gamma = gamma ** self.hyper_params.n_step
            critic_loss_n_element_wise = self._get_critic_loss(experiences_n, gamma)
            # to update loss and priorities
            critic_loss_element_wise += (
                critic_loss_n_element_wise * self.hyper_params.lambda1
            )
            critic_loss = torch.mean(critic_loss_element_wise * weights)

        self.critic_optim.zero_grad()
        critic_loss.backward()
        nn.utils.clip_grad_norm_(self.critic.parameters(), gradient_clip_cr)
        self.critic_optim.step()

        # train actor
        actions = self.actor(states)
        actor_loss_element_wise = -self.critic(torch.cat((states, actions), dim=-1))
        actor_loss = torch.mean(actor_loss_element_wise * weights)
        self.actor_optim.zero_grad()
        actor_loss.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(), gradient_clip_ac)
        self.actor_optim.step()

        # update target networks
        common_utils.soft_update(self.actor, self.actor_target, self.hyper_params.tau)
        common_utils.soft_update(self.critic, self.critic_target, self.hyper_params.tau)

        # update priorities
        new_priorities = critic_loss_element_wise
        new_priorities += self.hyper_params.lambda3 * actor_loss_element_wise.pow(2)
        new_priorities += self.hyper_params.per_eps
        new_priorities = new_priorities.data.cpu().numpy().squeeze()
        new_priorities += eps_d
        self.memory.update_priorities(indices, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.per_beta = self.per_beta + fraction * (1.0 - self.per_beta)

        return actor_loss.item(), critic_loss.item()

    def pretrain(self):
        """Pretraining steps."""
        pretrain_loss = list()
        pretrain_step = self.hyper_params.pretrain_step
        print("[INFO] Pre-Train %d step." % pretrain_step)
        for i_step in range(1, pretrain_step + 1):
            t_begin = time.time()
            loss = self.update_model()
            t_end = time.time()
            pretrain_loss.append(loss)  # for logging

            # logging
            if i_step == 1 or i_step % 100 == 0:
                avg_loss = np.vstack(pretrain_loss).mean(axis=0)
                pretrain_loss.clear()
                log_value = (0, avg_loss, 0, t_end - t_begin)
                self.write_log(log_value)
        print("[INFO] Pre-Train Complete!\n")
示例#25
0
class TD3Agent(Agent):
    """ActorCritic interacting with environment.

    Attributes:
        env (gym.Env): openAI Gym environment
        args (argparse.Namespace): arguments including hyperparameters and training settings
        hyper_params (ConfigDict): hyper-parameters
        network_cfg (ConfigDict): config of network for training agent
        optim_cfg (ConfigDict): config of optimizer
        state_dim (int): state size of env
        action_dim (int): action size of env
        memory (ReplayBuffer): replay memory
        exploration_noise (GaussianNoise): random noise for exploration
        target_policy_noise (GaussianNoise): random noise for target values
        actor (nn.Module): actor model to select actions
        critic1 (nn.Module): critic model to predict state values
        critic2 (nn.Module): critic model to predict state values
        critic_target1 (nn.Module): target critic model to predict state values
        critic_target2 (nn.Module): target critic model to predict state values
        actor_target (nn.Module): target actor model to select actions
        critic_optim (Optimizer): optimizer for training critic
        actor_optim (Optimizer): optimizer for training actor
        curr_state (np.ndarray): temporary storage of the current state
        total_steps (int): total step numbers
        episode_steps (int): step number of the current episode
        i_episode (int): current episode number
        noise_cfg (ConfigDict): config of noise

    """
    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        log_cfg: ConfigDict,
        hyper_params: ConfigDict,
        backbone: ConfigDict,
        head: ConfigDict,
        optim_cfg: ConfigDict,
        noise_cfg: ConfigDict,
    ):
        """Initialize.

        Args:
            env (gym.Env): openAI Gym environment
            args (argparse.Namespace): arguments including hyperparameters and training settings

        """
        Agent.__init__(self, env, args, log_cfg)

        self.curr_state = np.zeros((1, ))
        self.total_step = 0
        self.episode_step = 0
        self.update_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.noise_cfg = noise_cfg
        self.backbone_cfg = backbone
        self.head_cfg = head
        self.optim_cfg = optim_cfg

        self.state_dim = self.env.observation_space.shape
        self.action_dim = self.env.action_space.shape[0]

        # noise instance to make randomness of action
        self.exploration_noise = GaussianNoise(self.action_dim,
                                               noise_cfg.exploration_noise,
                                               noise_cfg.exploration_noise)

        self.target_policy_noise = GaussianNoise(
            self.action_dim,
            noise_cfg.target_policy_noise,
            noise_cfg.target_policy_noise,
        )

        if not self.args.test:
            # replay memory
            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       self.hyper_params.batch_size)

        self._init_network()

    def _init_network(self):
        """Initialize networks and optimizers."""

        self.head_cfg.actor.configs.state_size = self.state_dim
        self.head_cfg.critic.configs.state_size = (self.state_dim[0] +
                                                   self.action_dim, )
        self.head_cfg.actor.configs.output_size = self.action_dim

        # create actor
        self.actor = BaseNetwork(self.backbone_cfg.actor,
                                 self.head_cfg.actor).to(device)
        self.actor_target = BaseNetwork(self.backbone_cfg.actor,
                                        self.head_cfg.actor).to(device)
        self.actor_target.load_state_dict(self.actor.state_dict())

        # create q_critic
        self.critic1 = BaseNetwork(self.backbone_cfg.critic,
                                   self.head_cfg.critic).to(device)
        self.critic2 = BaseNetwork(self.backbone_cfg.critic,
                                   self.head_cfg.critic).to(device)

        self.critic_target1 = BaseNetwork(self.backbone_cfg.critic,
                                          self.head_cfg.critic).to(device)
        self.critic_target2 = BaseNetwork(self.backbone_cfg.critic,
                                          self.head_cfg.critic).to(device)

        self.critic_target1.load_state_dict(self.critic1.state_dict())
        self.critic_target2.load_state_dict(self.critic2.state_dict())

        # concat critic parameters to use one optim
        critic_parameters = list(self.critic1.parameters()) + list(
            self.critic2.parameters())

        # create optimizers
        self.actor_optim = optim.Adam(
            self.actor.parameters(),
            lr=self.optim_cfg.lr_actor,
            weight_decay=self.optim_cfg.weight_decay,
        )

        self.critic_optim = optim.Adam(
            critic_parameters,
            lr=self.optim_cfg.lr_critic,
            weight_decay=self.optim_cfg.weight_decay,
        )

        # load the optimizer and model parameters
        if self.args.load_from is not None:
            self.load_params(self.args.load_from)

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        # initial training step, try random action for exploration
        self.curr_state = state

        if (self.total_step < self.hyper_params.initial_random_action
                and not self.args.test):
            return np.array(self.env.action_space.sample())

        state = torch.FloatTensor(state).to(device)
        selected_action = self.actor(state).detach().cpu().numpy()

        if not self.args.test:
            noise = self.exploration_noise.sample()
            selected_action = np.clip(selected_action + noise, -1.0, 1.0)

        return selected_action

    def step(self,
             action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.args.test:
            # if last state is not terminal state in episode, done is false
            done_bool = (False if self.episode_step
                         == self.args.max_episode_steps else done)
            self.memory.add(
                (self.curr_state, action, reward, next_state, done_bool))

        return next_state, reward, done, info

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        self.update_step += 1

        experiences = self.memory.sample()
        states, actions, rewards, next_states, dones = experiences
        masks = 1 - dones

        # get actions with noise
        noise = torch.FloatTensor(self.target_policy_noise.sample()).to(device)
        clipped_noise = torch.clamp(
            noise,
            -self.noise_cfg.target_policy_noise_clip,
            self.noise_cfg.target_policy_noise_clip,
        )
        next_actions = (self.actor_target(next_states) + clipped_noise).clamp(
            -1.0, 1.0)

        # min (Q_1', Q_2')
        next_states_actions = torch.cat((next_states, next_actions), dim=-1)
        next_values1 = self.critic_target1(next_states_actions)
        next_values2 = self.critic_target2(next_states_actions)
        next_values = torch.min(next_values1, next_values2)

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        curr_returns = rewards + self.hyper_params.gamma * next_values * masks
        curr_returns = curr_returns.detach()

        # critic loss
        state_actions = torch.cat((states, actions), dim=-1)
        values1 = self.critic1(state_actions)
        values2 = self.critic2(state_actions)
        critic1_loss = F.mse_loss(values1, curr_returns)
        critic2_loss = F.mse_loss(values2, curr_returns)

        # train critic
        critic_loss = critic1_loss + critic2_loss
        self.critic_optim.zero_grad()
        critic_loss.backward()
        self.critic_optim.step()

        if self.update_step % self.hyper_params.policy_update_freq == 0:
            # policy loss
            actions = self.actor(states)
            state_actions = torch.cat((states, actions), dim=-1)
            actor_loss = -self.critic1(state_actions).mean()

            # train actor
            self.actor_optim.zero_grad()
            actor_loss.backward()
            self.actor_optim.step()

            # update target networks
            tau = self.hyper_params.tau
            common_utils.soft_update(self.critic1, self.critic_target1, tau)
            common_utils.soft_update(self.critic2, self.critic_target2, tau)
            common_utils.soft_update(self.actor, self.actor_target, tau)
        else:
            actor_loss = torch.zeros(1)

        return actor_loss.item(), critic1_loss.item(), critic2_loss.item()

    def load_params(self, path: str):
        """Load model and optimizer parameters."""
        Agent.load_params(self, path)

        params = torch.load(path)
        self.critic1.load_state_dict(params["critic1"])
        self.critic2.load_state_dict(params["critic2"])
        self.critic_target1.load_state_dict(params["critic_target1"])
        self.critic_target2.load_state_dict(params["critic_target2"])
        self.critic_optim.load_state_dict(params["critic_optim"])
        self.actor.load_state_dict(params["actor"])
        self.actor_target.load_state_dict(params["actor_target"])
        self.actor_optim.load_state_dict(params["actor_optim"])
        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode: int):  # type: ignore
        """Save model and optimizer parameters."""
        params = {
            "actor": self.actor.state_dict(),
            "actor_target": self.actor_target.state_dict(),
            "actor_optim": self.actor_optim.state_dict(),
            "critic1": self.critic1.state_dict(),
            "critic2": self.critic2.state_dict(),
            "critic_target1": self.critic_target1.state_dict(),
            "critic_target2": self.critic_target2.state_dict(),
            "critic_optim": self.critic_optim.state_dict(),
        }

        Agent.save_params(self, params, n_episode)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, policy_update_freq, avg_time_cost = log_value
        total_loss = loss.sum()
        print(
            "[INFO] episode %d, episode_step: %d, total_step: %d, total score: %d\n"
            "total loss: %f actor_loss: %.3f critic1_loss: %.3f critic2_loss: %.3f "
            "(spent %.6f sec/step)\n" % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0] * policy_update_freq,  # actor loss
                loss[1],  # critic1 loss
                loss[2],  # critic2 loss
                avg_time_cost,
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "total loss": total_loss,
                "actor loss": loss[0] * policy_update_freq,
                "critic1 loss": loss[1],
                "critic2 loss": loss[2],
                "time per each step": avg_time_cost,
            })

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            self.set_wandb()
            # wandb.watch([self.actor, self.critic1, self.critic2], log="parameters")

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            loss_episode = list()
            self.episode_step = 0

            t_begin = time.time()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                state = next_state
                score += reward

                if len(self.memory) >= self.hyper_params.batch_size:
                    loss = self.update_model()
                    loss_episode.append(loss)  # for logging

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            # logging
            if loss_episode:
                avg_loss = np.vstack(loss_episode).mean(axis=0)
                log_value = (
                    self.i_episode,
                    avg_loss,
                    score,
                    self.hyper_params.policy_update_freq,
                    avg_time_cost,
                )
                self.write_log(log_value)
            if self.i_episode % self.args.save_period == 0:
                self.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.save_params(self.i_episode)
        self.interim_test()
示例#26
0
class DDPGAgent(Agent):
    """DDPG interacting with environment.

    Attributes:
        env (gym.Env): openAI Gym environment
        args (argparse.Namespace): arguments including hyperparameters and training settings
        hyper_params (ConfigDict): hyper-parameters
        log_cfg (ConfigDict): configuration for saving log and checkpoint
        network_cfg (ConfigDict): config of network for training agent
        optim_cfg (ConfigDict): config of optimizer
        state_dim (int): state size of env
        action_dim (int): action size of env
        memory (ReplayBuffer): replay memory
        noise (OUNoise): random noise for exploration
        curr_state (np.ndarray): temporary storage of the current state
        total_step (int): total step numbers
        episode_step (int): step number of the current episode
        i_episode (int): current episode number

    """
    def __init__(
        self,
        env: gym.Env,
        env_info: ConfigDict,
        hyper_params: ConfigDict,
        learner_cfg: ConfigDict,
        noise_cfg: ConfigDict,
        log_cfg: ConfigDict,
        is_test: bool,
        load_from: str,
        is_render: bool,
        render_after: int,
        is_log: bool,
        save_period: int,
        episode_num: int,
        max_episode_steps: int,
        interim_test_num: int,
    ):
        """Initialize."""
        Agent.__init__(
            self,
            env,
            env_info,
            log_cfg,
            is_test,
            load_from,
            is_render,
            render_after,
            is_log,
            save_period,
            episode_num,
            max_episode_steps,
            interim_test_num,
        )

        self.curr_state = np.zeros((1, ))
        self.total_step = 0
        self.episode_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.learner_cfg = learner_cfg
        self.noise_cfg = noise_cfg

        # set noise
        self.noise = OUNoise(
            env_info.action_space.shape[0],
            theta=noise_cfg.ou_noise_theta,
            sigma=noise_cfg.ou_noise_sigma,
        )

        self._initialize()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.is_test:
            # replay memory
            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       self.hyper_params.batch_size)

        build_args = dict(
            hyper_params=self.hyper_params,
            log_cfg=self.log_cfg,
            noise_cfg=self.noise_cfg,
            env_name=self.env_info.name,
            state_size=self.env_info.observation_space.shape,
            output_size=self.env_info.action_space.shape[0],
            is_test=self.is_test,
            load_from=self.load_from,
        )
        self.learner = build_learner(self.learner_cfg, build_args)

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state
        state = self._preprocess_state(state)

        # if initial random action should be conducted
        if (self.total_step < self.hyper_params.initial_random_action
                and not self.is_test):
            return np.array(self.env_info.action_space.sample())

        with torch.no_grad():
            selected_action = self.learner.actor(state).detach().cpu().numpy()

        if not self.is_test:
            noise = self.noise.sample()
            selected_action = np.clip(selected_action + noise, -1.0, 1.0)

        return selected_action

    # pylint: disable=no-self-use
    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        state = numpy2floattensor(state, self.learner.device)
        return state

    def step(self,
             action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.is_test:
            # if the last state is not a terminal state, store done as false
            done_bool = False if self.episode_step == self.max_episode_steps else done
            transition = (self.curr_state, action, reward, next_state,
                          done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done, info

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        self.memory.add(transition)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, avg_time_cost = log_value
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %d\n"
            "total loss: %f actor_loss: %.3f critic_loss: %.3f (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0],
                loss[1],
                avg_time_cost,
            )  # actor loss  # critic loss
        )

        if self.is_log:
            wandb.log({
                "score": score,
                "total loss": total_loss,
                "actor loss": loss[0],
                "critic loss": loss[1],
                "time per each step": avg_time_cost,
            })

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def train(self):
        """Train the agent."""
        # logger
        if self.is_log:
            self.set_wandb()
            # wandb.watch([self.actor, self.critic], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            self.episode_step = 0
            losses = list()

            t_begin = time.time()

            while not done:
                if self.is_render and self.i_episode >= self.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                if len(self.memory) >= self.hyper_params.batch_size:
                    for _ in range(self.hyper_params.multiple_update):
                        experience = self.memory.sample()
                        experience = numpy2floattensor(experience,
                                                       self.learner.device)
                        loss = self.learner.update_model(experience)
                        losses.append(loss)  # for logging

                state = next_state
                score += reward

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            # logging
            if losses:
                avg_loss = np.vstack(losses).mean(axis=0)
                log_value = (self.i_episode, avg_loss, score, avg_time_cost)
                self.write_log(log_value)
                losses.clear()

            if self.i_episode % self.save_period == 0:
                self.learner.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.learner.save_params(self.i_episode)
        self.interim_test()
示例#27
0
class DQNAgent(Agent):
    """DQN interacting with environment.

    Attribute:
        env (gym.Env): openAI Gym environment
        args (argparse.Namespace): arguments including hyperparameters and training settings
        hyper_params (ConfigDict): hyper-parameters
        network_cfg (ConfigDict): config of network for training agent
        optim_cfg (ConfigDict): config of optimizer
        state_dim (int): state size of env
        action_dim (int): action size of env
        memory (PrioritizedReplayBuffer): replay memory
        dqn (nn.Module): actor model to select actions
        dqn_target (nn.Module): target actor model to select actions
        dqn_optim (Optimizer): optimizer for training actor
        curr_state (np.ndarray): temporary storage of the current state
        total_step (int): total step number
        episode_step (int): step number of the current episode
        i_episode (int): current episode number
        epsilon (float): parameter for epsilon greedy policy
        n_step_buffer (deque): n-size buffer to calculate n-step returns
        per_beta (float): beta parameter for prioritized replay buffer
        use_conv (bool): whether or not to use convolution layer
        use_n_step (bool): whether or not to use n-step returns

    """
    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        log_cfg: ConfigDict,
        hyper_params: ConfigDict,
        network_cfg: ConfigDict,
        optim_cfg: ConfigDict,
    ):
        """Initialize."""
        Agent.__init__(self, env, args, log_cfg)

        self.curr_state = np.zeros(1)
        self.episode_step = 0
        self.total_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.network_cfg = network_cfg
        self.optim_cfg = optim_cfg

        self.state_dim = self.env.observation_space.shape
        self.action_dim = self.env.action_space.n

        self.per_beta = hyper_params.per_beta
        self.use_conv = len(self.state_dim) > 1
        self.use_n_step = hyper_params.n_step > 1

        if hyper_params.use_noisy_net:
            self.max_epsilon = 0.0
            self.min_epsilon = 0.0
            self.epsilon = 0.0
        else:
            self.max_epsilon = hyper_params.max_epsilon
            self.min_epsilon = hyper_params.min_epsilon
            self.epsilon = hyper_params.max_epsilon

        self._initialize()
        self._init_network()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory for a single step
            self.memory = PrioritizedReplayBuffer(
                self.hyper_params.buffer_size,
                self.hyper_params.batch_size,
                alpha=self.hyper_params.per_alpha,
            )

            # replay memory for multi-steps
            if self.use_n_step:
                self.memory_n = ReplayBuffer(
                    self.hyper_params.buffer_size,
                    n_step=self.hyper_params.n_step,
                    gamma=self.hyper_params.gamma,
                )

    # pylint: disable=attribute-defined-outside-init
    def _init_network(self):
        """Initialize networks and optimizers."""

        if self.use_conv:
            # create CNN
            self.dqn = dqn_utils.get_cnn_model(self.hyper_params,
                                               self.action_dim, self.state_dim,
                                               self.network_cfg)
            self.dqn_target = dqn_utils.get_cnn_model(self.hyper_params,
                                                      self.action_dim,
                                                      self.state_dim,
                                                      self.network_cfg)

        else:
            # create FC
            fc_input_size = self.state_dim[0]

            self.dqn = dqn_utils.get_fc_model(
                self.hyper_params,
                fc_input_size,
                self.action_dim,
                self.network_cfg.hidden_sizes,
            )
            self.dqn_target = dqn_utils.get_fc_model(
                self.hyper_params,
                fc_input_size,
                self.action_dim,
                self.network_cfg.hidden_sizes,
            )

        self.dqn_target.load_state_dict(self.dqn.state_dict())

        # create optimizer
        self.dqn_optim = optim.Adam(
            self.dqn.parameters(),
            lr=self.optim_cfg.lr_dqn,
            weight_decay=self.optim_cfg.weight_decay,
            eps=self.optim_cfg.adam_eps,
        )

        # load the optimizer and model parameters
        if self.args.load_from is not None:
            self.load_params(self.args.load_from)

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state

        # epsilon greedy policy
        # pylint: disable=comparison-with-callable
        if not self.args.test and self.epsilon > np.random.random():
            selected_action = np.array(self.env.action_space.sample())
        else:
            state = self._preprocess_state(state)
            selected_action = self.dqn(state).argmax()
            selected_action = selected_action.detach().cpu().numpy()
        return selected_action

    # pylint: disable=no-self-use
    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        state = torch.FloatTensor(state).to(device)
        return state

    def step(self,
             action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.args.test:
            # if the last state is not a terminal state, store done as false
            done_bool = (False if self.episode_step
                         == self.args.max_episode_steps else done)

            transition = (self.curr_state, action, reward, next_state,
                          done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done, info

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        # add n-step transition
        if self.use_n_step:
            transition = self.memory_n.add(transition)

        # add a single step transition
        # if transition is not an empty tuple
        if transition:
            self.memory.add(transition)

    def _get_dqn_loss(self, experiences: Tuple[torch.Tensor, ...],
                      gamma: float) -> Tuple[torch.Tensor, torch.Tensor]:
        """Return element-wise dqn loss and Q-values."""

        if self.hyper_params.use_dist_q == "IQN":
            return dqn_utils.calculate_iqn_loss(
                model=self.dqn,
                target_model=self.dqn_target,
                experiences=experiences,
                gamma=gamma,
                batch_size=self.hyper_params.batch_size,
                n_tau_samples=self.hyper_params.n_tau_samples,
                n_tau_prime_samples=self.hyper_params.n_tau_prime_samples,
                kappa=self.hyper_params.kappa,
            )
        elif self.hyper_params.use_dist_q == "C51":
            return dqn_utils.calculate_c51_loss(
                model=self.dqn,
                target_model=self.dqn_target,
                experiences=experiences,
                gamma=gamma,
                batch_size=self.hyper_params.batch_size,
                v_min=self.hyper_params.v_min,
                v_max=self.hyper_params.v_max,
                atom_size=self.hyper_params.atoms,
            )
        else:
            return dqn_utils.calculate_dqn_loss(
                model=self.dqn,
                target_model=self.dqn_target,
                experiences=experiences,
                gamma=gamma,
            )

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        # 1 step loss
        experiences_1 = self.memory.sample(self.per_beta)
        weights, indices = experiences_1[-3:-1]
        gamma = self.hyper_params.gamma
        dq_loss_element_wise, q_values = self._get_dqn_loss(
            experiences_1, gamma)
        dq_loss = torch.mean(dq_loss_element_wise * weights)

        # n step loss
        if self.use_n_step:
            experiences_n = self.memory_n.sample(indices)
            gamma = self.hyper_params.gamma**self.hyper_params.n_step
            dq_loss_n_element_wise, q_values_n = self._get_dqn_loss(
                experiences_n, gamma)

            # to update loss and priorities
            q_values = 0.5 * (q_values + q_values_n)
            dq_loss_element_wise += dq_loss_n_element_wise * self.hyper_params.w_n_step
            dq_loss = torch.mean(dq_loss_element_wise * weights)

        # q_value regularization
        q_regular = torch.norm(q_values, 2).mean() * self.hyper_params.w_q_reg

        # total loss
        loss = dq_loss + q_regular

        self.dqn_optim.zero_grad()
        loss.backward()
        clip_grad_norm_(self.dqn.parameters(), self.hyper_params.gradient_clip)
        self.dqn_optim.step()

        # update target networks
        common_utils.soft_update(self.dqn, self.dqn_target,
                                 self.hyper_params.tau)

        # update priorities in PER
        loss_for_prior = dq_loss_element_wise.detach().cpu().numpy()
        new_priorities = loss_for_prior + self.hyper_params.per_eps
        self.memory.update_priorities(indices, new_priorities)

        # increase beta
        fraction = min(float(self.i_episode) / self.args.episode_num, 1.0)
        self.per_beta = self.per_beta + fraction * (1.0 - self.per_beta)

        if self.hyper_params.use_noisy_net:
            self.dqn.reset_noise()
            self.dqn_target.reset_noise()

        return loss.item(), q_values.mean().item()

    def load_params(self, path: str):
        """Load model and optimizer parameters."""
        Agent.load_params(self, path)

        params = torch.load(path)
        self.dqn.load_state_dict(params["dqn_state_dict"])
        self.dqn_target.load_state_dict(params["dqn_target_state_dict"])
        self.dqn_optim.load_state_dict(params["dqn_optim_state_dict"])
        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode: int):  # type: ignore
        """Save model and optimizer parameters."""
        params = {
            "dqn_state_dict": self.dqn.state_dict(),
            "dqn_target_state_dict": self.dqn_target.state_dict(),
            "dqn_optim_state_dict": self.dqn_optim.state_dict(),
        }

        Agent.save_params(self, params, n_episode)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, avg_time_cost = log_value
        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %f\n"
            "epsilon: %f, loss: %f, avg q-value: %f (spent %.6f sec/step)\n" %
            (
                i,
                self.episode_step,
                self.total_step,
                score,
                self.epsilon,
                loss[0],
                loss[1],
                avg_time_cost,
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "epsilon": self.epsilon,
                "dqn loss": loss[0],
                "avg q values": loss[1],
                "time per each step": avg_time_cost,
            })

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            self.set_wandb()
            # wandb.watch([self.dqn], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            self.episode_step = 0
            losses = list()
            done = False
            score = 0

            t_begin = time.time()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                if len(self.memory) >= self.hyper_params.update_starts_from:
                    if self.total_step % self.hyper_params.train_freq == 0:
                        for _ in range(self.hyper_params.multiple_update):
                            loss = self.update_model()
                            losses.append(loss)  # for logging

                    # decrease epsilon
                    self.epsilon = max(
                        self.epsilon - (self.max_epsilon - self.min_epsilon) *
                        self.hyper_params.epsilon_decay,
                        self.min_epsilon,
                    )

                state = next_state
                score += reward

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            if losses:
                avg_loss = np.vstack(losses).mean(axis=0)
                log_value = (self.i_episode, avg_loss, score, avg_time_cost)
                self.write_log(log_value)

            if self.i_episode % self.args.save_period == 0:
                self.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.save_params(self.i_episode)
        self.interim_test()
示例#28
0
class SACAgent(Agent):
    """SAC agent interacting with environment.

    Attrtibutes:
        env (gym.Env): openAI Gym environment
        args (argparse.Namespace): arguments including hyperparameters and training settings
        hyper_params (ConfigDict): hyper-parameters
        network_cfg (ConfigDict): config of network for training agent
        optim_cfg (ConfigDict): config of optimizer
        state_dim (int): state size of env
        action_dim (int): action size of env
        memory (ReplayBuffer): replay memory
        actor (nn.Module): actor model to select actions
        actor_target (nn.Module): target actor model to select actions
        actor_optim (Optimizer): optimizer for training actor
        critic_1 (nn.Module): critic model to predict state values
        critic_2 (nn.Module): critic model to predict state values
        critic_target1 (nn.Module): target critic model to predict state values
        critic_target2 (nn.Module): target critic model to predict state values
        critic_optim1 (Optimizer): optimizer for training critic_1
        critic_optim2 (Optimizer): optimizer for training critic_2
        curr_state (np.ndarray): temporary storage of the current state
        total_step (int): total step numbers
        episode_step (int): step number of the current episode
        update_step (int): step number of updates
        i_episode (int): current episode number
        target_entropy (int): desired entropy used for the inequality constraint
        log_alpha (torch.Tensor): weight for entropy
        alpha_optim (Optimizer): optimizer for alpha

    """
    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        log_cfg: ConfigDict,
        hyper_params: ConfigDict,
        backbone: ConfigDict,
        head: ConfigDict,
        optim_cfg: ConfigDict,
    ):
        """Initialize.

        Args:
            env (gym.Env): openAI Gym environment
            args (argparse.Namespace): arguments including hyperparameters and training settings

        """
        Agent.__init__(self, env, args, log_cfg)

        self.curr_state = np.zeros((1, ))
        self.total_step = 0
        self.episode_step = 0
        self.update_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.backbone_cfg = backbone
        self.head_cfg = head
        self.optim_cfg = optim_cfg

        self.state_dim = self.env.observation_space.shape
        self.action_dim = self.env.action_space.shape[0]

        # target entropy
        target_entropy = -np.prod((self.action_dim, )).item()  # heuristic
        # automatic entropy tuning
        if hyper_params.auto_entropy_tuning:
            self.target_entropy = target_entropy
            self.log_alpha = torch.zeros(1, requires_grad=True, device=device)
            self.alpha_optim = optim.Adam([self.log_alpha],
                                          lr=optim_cfg.lr_entropy)

        self._initialize()
        self._init_network()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory
            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       self.hyper_params.batch_size)

    # pylint: disable=attribute-defined-outside-init
    def _init_network(self):
        """Initialize networks and optimizers."""

        self.head_cfg.actor.configs.state_size = (
            self.head_cfg.critic_vf.configs.state_size) = self.state_dim
        self.head_cfg.critic_qf.configs.state_size = (self.state_dim[0] +
                                                      self.action_dim, )
        self.head_cfg.actor.configs.output_size = self.action_dim

        # create actor
        self.actor = BaseNetwork(self.backbone_cfg.actor,
                                 self.head_cfg.actor).to(device)

        # create v_critic
        self.vf = BaseNetwork(self.backbone_cfg.critic_vf,
                              self.head_cfg.critic_vf).to(device)
        self.vf_target = BaseNetwork(self.backbone_cfg.critic_vf,
                                     self.head_cfg.critic_vf).to(device)
        self.vf_target.load_state_dict(self.vf.state_dict())

        # create q_critic
        self.qf_1 = BaseNetwork(self.backbone_cfg.critic_qf,
                                self.head_cfg.critic_qf).to(device)
        self.qf_2 = BaseNetwork(self.backbone_cfg.critic_qf,
                                self.head_cfg.critic_qf).to(device)

        # create optimizers
        self.actor_optim = optim.Adam(
            self.actor.parameters(),
            lr=self.optim_cfg.lr_actor,
            weight_decay=self.optim_cfg.weight_decay,
        )
        self.vf_optim = optim.Adam(
            self.vf.parameters(),
            lr=self.optim_cfg.lr_vf,
            weight_decay=self.optim_cfg.weight_decay,
        )
        self.qf_1_optim = optim.Adam(
            self.qf_1.parameters(),
            lr=self.optim_cfg.lr_qf1,
            weight_decay=self.optim_cfg.weight_decay,
        )
        self.qf_2_optim = optim.Adam(
            self.qf_2.parameters(),
            lr=self.optim_cfg.lr_qf2,
            weight_decay=self.optim_cfg.weight_decay,
        )

        # load the optimizer and model parameters
        if self.args.load_from is not None:
            self.load_params(self.args.load_from)

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state
        state = self._preprocess_state(state)

        # if initial random action should be conducted
        if (self.total_step < self.hyper_params.initial_random_action
                and not self.args.test):
            return np.array(self.env.action_space.sample())

        if self.args.test:
            _, _, _, selected_action, _ = self.actor(state)
        else:
            selected_action, _, _, _, _ = self.actor(state)

        return selected_action.detach().cpu().numpy()

    # pylint: disable=no-self-use
    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        state = torch.FloatTensor(state).to(device)
        return state

    def step(self,
             action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.args.test:
            # if the last state is not a terminal state, store done as false
            done_bool = (False if self.episode_step
                         == self.args.max_episode_steps else done)
            transition = (self.curr_state, action, reward, next_state,
                          done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done, info

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        self.memory.add(transition)

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        self.update_step += 1

        experiences = self.memory.sample()
        states, actions, rewards, next_states, dones = experiences
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)

        # train alpha
        if self.hyper_params.auto_entropy_tuning:
            alpha_loss = (-self.log_alpha *
                          (log_prob + self.target_entropy).detach()).mean()

            self.alpha_optim.zero_grad()
            alpha_loss.backward()
            self.alpha_optim.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params.w_entropy

        # Q function loss
        masks = 1 - dones
        states_actions = torch.cat((states, actions), dim=-1)
        q_1_pred = self.qf_1(states_actions)
        q_2_pred = self.qf_2(states_actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params.gamma * v_target * masks
        qf_1_loss = F.mse_loss(q_1_pred, q_target.detach())
        qf_2_loss = F.mse_loss(q_2_pred, q_target.detach())

        # V function loss
        states_actions = torch.cat((states, new_actions), dim=-1)
        v_pred = self.vf(states)
        q_pred = torch.min(self.qf_1(states_actions),
                           self.qf_2(states_actions))
        v_target = q_pred - alpha * log_prob
        vf_loss = F.mse_loss(v_pred, v_target.detach())

        # train Q functions
        self.qf_1_optim.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optim.step()

        self.qf_2_optim.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optim.step()

        # train V function
        self.vf_optim.zero_grad()
        vf_loss.backward()
        self.vf_optim.step()

        if self.update_step % self.hyper_params.policy_update_freq == 0:
            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss = (alpha * log_prob - advantage).mean()

            # regularization
            mean_reg = self.hyper_params.w_mean_reg * mu.pow(2).mean()
            std_reg = self.hyper_params.w_std_reg * std.pow(2).mean()
            pre_activation_reg = self.hyper_params.w_pre_activation_reg * (
                pre_tanh_value.pow(2).sum(dim=-1).mean())
            actor_reg = mean_reg + std_reg + pre_activation_reg

            # actor loss + regularization
            actor_loss += actor_reg

            # train actor
            self.actor_optim.zero_grad()
            actor_loss.backward()
            self.actor_optim.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target,
                                     self.hyper_params.tau)
        else:
            actor_loss = torch.zeros(1)

        return (
            actor_loss.item(),
            qf_1_loss.item(),
            qf_2_loss.item(),
            vf_loss.item(),
            alpha_loss.item(),
        )

    def load_params(self, path: str):
        """Load model and optimizer parameters."""
        Agent.load_params(self, path)

        params = torch.load(path)
        self.actor.load_state_dict(params["actor"])
        self.qf_1.load_state_dict(params["qf_1"])
        self.qf_2.load_state_dict(params["qf_2"])
        self.vf.load_state_dict(params["vf"])
        self.vf_target.load_state_dict(params["vf_target"])
        self.actor_optim.load_state_dict(params["actor_optim"])
        self.qf_1_optim.load_state_dict(params["qf_1_optim"])
        self.qf_2_optim.load_state_dict(params["qf_2_optim"])
        self.vf_optim.load_state_dict(params["vf_optim"])

        if self.hyper_params.auto_entropy_tuning:
            self.alpha_optim.load_state_dict(params["alpha_optim"])

        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode: int):  # type: ignore
        """Save model and optimizer parameters."""
        params = {
            "actor": self.actor.state_dict(),
            "qf_1": self.qf_1.state_dict(),
            "qf_2": self.qf_2.state_dict(),
            "vf": self.vf.state_dict(),
            "vf_target": self.vf_target.state_dict(),
            "actor_optim": self.actor_optim.state_dict(),
            "qf_1_optim": self.qf_1_optim.state_dict(),
            "qf_2_optim": self.qf_2_optim.state_dict(),
            "vf_optim": self.vf_optim.state_dict(),
        }

        if self.hyper_params.auto_entropy_tuning:
            params["alpha_optim"] = self.alpha_optim.state_dict()

        Agent.save_params(self, params, n_episode)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, policy_update_freq, avg_time_cost = log_value
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode_step %d, total step %d, total score: %d\n"
            "total loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f "
            "vf_loss: %.3f alpha_loss: %.3f (spent %.6f sec/step)\n" % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0] * policy_update_freq,  # actor loss
                loss[1],  # qf_1 loss
                loss[2],  # qf_2 loss
                loss[3],  # vf loss
                loss[4],  # alpha loss
                avg_time_cost,
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "total loss": total_loss,
                "actor loss": loss[0] * policy_update_freq,
                "qf_1 loss": loss[1],
                "qf_2 loss": loss[2],
                "vf loss": loss[3],
                "alpha loss": loss[4],
                "time per each step": avg_time_cost,
            })

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            self.set_wandb()
            # wandb.watch([self.actor, self.vf, self.qf_1, self.qf_2], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            self.episode_step = 0
            loss_episode = list()

            t_begin = time.time()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                state = next_state
                score += reward

                # training
                if len(self.memory) >= self.hyper_params.batch_size:
                    for _ in range(self.hyper_params.multiple_update):
                        loss = self.update_model()
                        loss_episode.append(loss)  # for logging

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            # logging
            if loss_episode:
                avg_loss = np.vstack(loss_episode).mean(axis=0)
                log_value = (
                    self.i_episode,
                    avg_loss,
                    score,
                    self.hyper_params.policy_update_freq,
                    avg_time_cost,
                )
                self.write_log(log_value)

            if self.i_episode % self.args.save_period == 0:
                self.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.save_params(self.i_episode)
        self.interim_test()
示例#29
0
class BCSACAgent(SACAgent):
    """BC with SAC agent interacting with environment.

    Attrtibutes:
        her (HER): hinsight experience replay
        transitions_epi (list): transitions per episode (for HER)
        desired_state (np.ndarray): desired state of current episode
        memory (ReplayBuffer): replay memory
        demo_memory (ReplayBuffer): replay memory for demo
        lambda2 (float): proportion of BC loss

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params.use_her:
            self.her = build_her(self.hyper_params.her)
            print(f"[INFO] Build {str(self.her)}.")

            if self.hyper_params.desired_states_from_demo:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1, ))
            demo = self.her.generate_demo_transitions(demo)

            if not self.her.is_goal_in_state:
                self.state_dim = (self.state_dim[0] * 2, )
        else:
            self.her = None

        if not self.args.test:
            # Replay buffers
            demo_batch_size = self.hyper_params.demo_batch_size
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params.buffer_size,
                                       demo_batch_size)

            # set hyper parameters
            self.lambda2 = 1.0 / demo_batch_size

    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        if self.hyper_params.use_her:
            self.desired_state = self.her.get_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)
        state = torch.FloatTensor(state).to(device)
        return state

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        if self.hyper_params.use_her:
            self.transitions_epi.append(transition)
            done = transition[
                -1] or self.episode_step == self.args.max_episode_steps
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi,
                    self.desired_state,
                    self.hyper_params.success_score,
                )
                self.memory.extend(transitions)
                self.transitions_epi.clear()
        else:
            self.memory.add(transition)

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        self.update_step += 1

        experiences, demos = self.memory.sample(), self.demo_memory.sample()

        states, actions, rewards, next_states, dones = experiences
        demo_states, demo_actions, _, _, _ = demos
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)
        pred_actions, _, _, _, _ = self.actor(demo_states)

        # train alpha
        if self.hyper_params.auto_entropy_tuning:
            alpha_loss = (-self.log_alpha *
                          (log_prob + self.target_entropy).detach()).mean()

            self.alpha_optim.zero_grad()
            alpha_loss.backward()
            self.alpha_optim.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params.w_entropy

        # Q function loss
        masks = 1 - dones
        states_actions = torch.cat((states, actions), dim=-1)
        q_1_pred = self.qf_1(states_actions)
        q_2_pred = self.qf_2(states_actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params.gamma * v_target * masks
        qf_1_loss = F.mse_loss(q_1_pred, q_target.detach())
        qf_2_loss = F.mse_loss(q_2_pred, q_target.detach())

        # V function loss
        states_actions = torch.cat((states, new_actions), dim=-1)
        v_pred = self.vf(states)
        q_pred = torch.min(self.qf_1(states_actions),
                           self.qf_2(states_actions))
        v_target = q_pred - alpha * log_prob
        vf_loss = F.mse_loss(v_pred, v_target.detach())

        # train Q functions
        self.qf_1_optim.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optim.step()

        self.qf_2_optim.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optim.step()

        # train V function
        self.vf_optim.zero_grad()
        vf_loss.backward()
        self.vf_optim.step()

        # update actor
        actor_loss = torch.zeros(1)
        n_qf_mask = 0
        if self.update_step % self.hyper_params.policy_update_freq == 0:
            # bc loss
            qf_mask = torch.gt(
                self.qf_1(torch.cat((demo_states, demo_actions), dim=-1)),
                self.qf_1(torch.cat((demo_states, pred_actions), dim=-1)),
            ).to(device)
            qf_mask = qf_mask.float()
            n_qf_mask = int(qf_mask.sum().item())

            if n_qf_mask == 0:
                bc_loss = torch.zeros(1, device=device)
            else:
                bc_loss = (torch.mul(pred_actions, qf_mask) - torch.mul(
                    demo_actions, qf_mask)).pow(2).sum() / n_qf_mask

            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss = (alpha * log_prob - advantage).mean()
            actor_loss = self.hyper_params.lambda1 * actor_loss + self.lambda2 * bc_loss

            # regularization
            mean_reg = self.hyper_params.w_mean_reg * mu.pow(2).mean()
            std_reg = self.hyper_params.w_std_reg * std.pow(2).mean()
            pre_activation_reg = self.hyper_params.w_pre_activation_reg * (
                pre_tanh_value.pow(2).sum(dim=-1).mean())
            actor_reg = mean_reg + std_reg + pre_activation_reg

            # actor loss + regularization
            actor_loss += actor_reg

            # train actor
            self.actor_optim.zero_grad()
            actor_loss.backward()
            self.actor_optim.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target,
                                     self.hyper_params.tau)

        return (
            actor_loss.item(),
            qf_1_loss.item(),
            qf_2_loss.item(),
            vf_loss.item(),
            alpha_loss.item(),
            n_qf_mask,
        )

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, policy_update_freq, avg_time_cost = log_value
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode_step %d, total step %d, total score: %d\n"
            "total loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f "
            "vf_loss: %.3f alpha_loss: %.3f n_qf_mask: %d (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0] * policy_update_freq,  # actor loss
                loss[1],  # qf_1 loss
                loss[2],  # qf_2 loss
                loss[3],  # vf loss
                loss[4],  # alpha loss
                loss[5],  # n_qf_mask
                avg_time_cost,
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "total loss": total_loss,
                "actor loss": loss[0] * policy_update_freq,
                "qf_1 loss": loss[1],
                "qf_2 loss": loss[2],
                "vf loss": loss[3],
                "alpha loss": loss[4],
                "time per each step": avg_time_cost,
            })
示例#30
0
class DDPGAgent(Agent):
    """ActorCritic interacting with environment.

    Attributes:
        env (gym.Env): openAI Gym environment
        args (argparse.Namespace): arguments including hyperparameters and training settings
        hyper_params (ConfigDict): hyper-parameters
        network_cfg (ConfigDict): config of network for training agent
        optim_cfg (ConfigDict): config of optimizer
        state_dim (int): state size of env
        action_dim (int): action size of env
        memory (ReplayBuffer): replay memory
        noise (OUNoise): random noise for exploration
        actor (nn.Module): actor model to select actions
        actor_target (nn.Module): target actor model to select actions
        critic (nn.Module): critic model to predict state values
        critic_target (nn.Module): target critic model to predict state values
        actor_optim (Optimizer): optimizer for training actor
        critic_optim (Optimizer): optimizer for training critic
        curr_state (np.ndarray): temporary storage of the current state
        total_step (int): total step numbers
        episode_step (int): step number of the current episode
        i_episode (int): current episode number

    """

    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        log_cfg: ConfigDict,
        hyper_params: ConfigDict,
        backbone: ConfigDict,
        head: ConfigDict,
        optim_cfg: ConfigDict,
        noise_cfg: ConfigDict,
    ):
        """Initialize."""
        Agent.__init__(self, env, args, log_cfg)

        self.curr_state = np.zeros((1,))
        self.total_step = 0
        self.episode_step = 0
        self.i_episode = 0

        self.hyper_params = hyper_params
        self.backbone_cfg = backbone
        self.head_cfg = head
        self.optim_cfg = optim_cfg

        self.state_dim = self.env.observation_space.shape
        self.action_dim = self.env.action_space.shape[0]

        # set noise
        self.noise = OUNoise(
            self.action_dim,
            theta=noise_cfg.ou_noise_theta,
            sigma=noise_cfg.ou_noise_sigma,
        )

        self._initialize()
        self._init_network()

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory
            self.memory = ReplayBuffer(
                self.hyper_params.buffer_size, self.hyper_params.batch_size
            )

    # pylint: disable=attribute-defined-outside-init
    def _init_network(self):
        """Initialize networks and optimizers."""

        self.head_cfg.actor.configs.state_size = self.state_dim

        # ddpg critic gets state & action as input,
        # and make the type to tuple to conform the gym action_space type.
        self.head_cfg.critic.configs.state_size = (self.state_dim[0] + self.action_dim,)
        self.head_cfg.actor.configs.output_size = self.action_dim

        # create actor
        self.actor = BaseNetwork(self.backbone_cfg.actor, self.head_cfg.actor).to(
            device
        )
        self.actor_target = BaseNetwork(
            self.backbone_cfg.actor, self.head_cfg.actor
        ).to(device)
        self.actor_target.load_state_dict(self.actor.state_dict())

        # create critic
        self.critic = BaseNetwork(self.backbone_cfg.critic, self.head_cfg.critic).to(
            device
        )
        self.critic_target = BaseNetwork(
            self.backbone_cfg.critic, self.head_cfg.critic
        ).to(device)
        self.critic_target.load_state_dict(self.critic.state_dict())

        # create optimizer
        self.actor_optim = optim.Adam(
            self.actor.parameters(),
            lr=self.optim_cfg.lr_actor,
            weight_decay=self.optim_cfg.weight_decay,
        )

        self.critic_optim = optim.Adam(
            self.critic.parameters(),
            lr=self.optim_cfg.lr_critic,
            weight_decay=self.optim_cfg.weight_decay,
        )

        # load the optimizer and model parameters
        if self.args.load_from is not None:
            self.load_params(self.args.load_from)

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        self.curr_state = state
        state = self._preprocess_state(state)

        # if initial random action should be conducted
        if (
            self.total_step < self.hyper_params.initial_random_action
            and not self.args.test
        ):
            return np.array(self.env.action_space.sample())

        selected_action = self.actor(state).detach().cpu().numpy()

        if not self.args.test:
            noise = self.noise.sample()
            selected_action = np.clip(selected_action + noise, -1.0, 1.0)

        return selected_action

    # pylint: disable=no-self-use
    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        state = torch.FloatTensor(state).to(device)
        return state

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool, dict]:
        """Take an action and return the response of the env."""
        next_state, reward, done, info = self.env.step(action)

        if not self.args.test:
            # if the last state is not a terminal state, store done as false
            done_bool = (
                False if self.episode_step == self.args.max_episode_steps else done
            )
            transition = (self.curr_state, action, reward, next_state, done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done, info

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        self.memory.add(transition)

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences = self.memory.sample()
        states, actions, rewards, next_states, dones = experiences

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        next_actions = self.actor_target(next_states)
        next_values = self.critic_target(torch.cat((next_states, next_actions), dim=-1))
        curr_returns = rewards + self.hyper_params.gamma * next_values * masks
        curr_returns = curr_returns.to(device)

        # train critic
        gradient_clip_ac = self.hyper_params.gradient_clip_ac
        gradient_clip_cr = self.hyper_params.gradient_clip_cr

        values = self.critic(torch.cat((states, actions), dim=-1))
        critic_loss = F.mse_loss(values, curr_returns)
        self.critic_optim.zero_grad()
        critic_loss.backward()
        nn.utils.clip_grad_norm_(self.critic.parameters(), gradient_clip_cr)
        self.critic_optim.step()

        # train actor
        actions = self.actor(states)
        actor_loss = -self.critic(torch.cat((states, actions), dim=-1)).mean()
        self.actor_optim.zero_grad()
        actor_loss.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(), gradient_clip_ac)
        self.actor_optim.step()

        # update target networks
        common_utils.soft_update(self.actor, self.actor_target, self.hyper_params.tau)
        common_utils.soft_update(self.critic, self.critic_target, self.hyper_params.tau)

        return actor_loss.item(), critic_loss.item()

    def load_params(self, path: str):
        """Load model and optimizer parameters."""
        Agent.load_params(self, path)

        params = torch.load(path)
        self.actor.load_state_dict(params["actor_state_dict"])
        self.actor_target.load_state_dict(params["actor_target_state_dict"])
        self.critic.load_state_dict(params["critic_state_dict"])
        self.critic_target.load_state_dict(params["critic_target_state_dict"])
        self.actor_optim.load_state_dict(params["actor_optim_state_dict"])
        self.critic_optim.load_state_dict(params["critic_optim_state_dict"])
        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode: int):
        """Save model and optimizer parameters."""
        params = {
            "actor_state_dict": self.actor.state_dict(),
            "actor_target_state_dict": self.actor_target.state_dict(),
            "critic_state_dict": self.critic.state_dict(),
            "critic_target_state_dict": self.critic_target.state_dict(),
            "actor_optim_state_dict": self.actor_optim.state_dict(),
            "critic_optim_state_dict": self.critic_optim.state_dict(),
        }
        Agent._save_params(self, params, n_episode)

    def write_log(self, log_value: tuple):
        """Write log about loss and score"""
        i, loss, score, avg_time_cost = log_value
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %d\n"
            "total loss: %f actor_loss: %.3f critic_loss: %.3f (spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0],
                loss[1],
                avg_time_cost,
            )  # actor loss  # critic loss
        )

        if self.args.log:
            wandb.log(
                {
                    "score": score,
                    "total loss": total_loss,
                    "actor loss": loss[0],
                    "critic loss": loss[1],
                    "time per each step": avg_time_cost,
                }
            )

    # pylint: disable=no-self-use, unnecessary-pass
    def pretrain(self):
        """Pretraining steps."""
        pass

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            self.set_wandb()
            # wandb.watch([self.actor, self.critic], log="parameters")

        # pre-training if needed
        self.pretrain()

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            self.episode_step = 0
            losses = list()

            t_begin = time.time()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done, _ = self.step(action)
                self.total_step += 1
                self.episode_step += 1

                if len(self.memory) >= self.hyper_params.batch_size:
                    for _ in range(self.hyper_params.multiple_update):
                        loss = self.update_model()
                        losses.append(loss)  # for logging

                state = next_state
                score += reward

            t_end = time.time()
            avg_time_cost = (t_end - t_begin) / self.episode_step

            # logging
            if losses:
                avg_loss = np.vstack(losses).mean(axis=0)
                log_value = (self.i_episode, avg_loss, score, avg_time_cost)
                self.write_log(log_value)
                losses.clear()

            if self.i_episode % self.args.save_period == 0:
                self.save_params(self.i_episode)
                self.interim_test()

        # termination
        self.env.close()
        self.save_params(self.i_episode)
        self.interim_test()