def _initialize(self): """Initialize non-common things.""" self.save_distillation_dir = None if not self.hyper_params.is_student: # Since raining teacher do not require DistillationBuffer, # it overloads DQNAgent._initialize. print("[INFO] Teacher mode.") DQNAgent._initialize(self) self.make_distillation_dir() else: # Training student or generating distillation data(test). print("[INFO] Student mode.") self.softmax_tau = 0.01 build_args = dict( hyper_params=self.hyper_params, log_cfg=self.log_cfg, env_name=self.env_info.name, state_size=self.env_info.observation_space.shape, output_size=self.env_info.action_space.n, is_test=self.is_test, load_from=self.load_from, ) self.learner = build_learner(self.learner_cfg, build_args) self.dataset_path = self.hyper_params.dataset_path self.memory = DistillationBuffer(self.hyper_params.batch_size, self.dataset_path) if self.is_test: self.make_distillation_dir()
def _initialize(self): """Initialize non-common things.""" self.save_distillation_dir = None if not self.args.student: # Since raining teacher do not require DistillationBuffer, # it overloads DQNAgent._initialize. DQNAgent._initialize(self) self.make_distillation_dir() else: # Training student or generating distillation data(test). self.softmax_tau = 0.01 self.learner = build_learner(self.learner_cfg) self.dataset_path = self.hyper_params.dataset_path self.memory = DistillationBuffer(self.hyper_params.batch_size, self.dataset_path) if self.args.test: self.make_distillation_dir()