def cli(): # Training settings parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training", ) parser.add_argument("--lr", type=float, default=0.01, metavar="LR", help="learning rate ") parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument("--seed", type=int, default=0, metavar="S", help="random seed ") parser.add_argument( "--save-interval", type=int, default=100, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--log-dir", default="/tmp/mnist", metavar="N", help="") parser.add_argument("--run-id", default="", metavar="N", help="") parser.add_argument("--load-path", type=Path) dataset_parser = parser.add_argument_group("dataset_args") dataset_parser.add_argument("--lower-level-config", type=Path, required=True) dataset_parser.add_argument("--lower-level-load-path", type=Path, required=True) ppo.control_flow.multi_step.env.build_parser( dataset_parser, default_max_while_loops=2, default_max_world_resamples=0, default_min_lines=1, default_max_lines=20, default_time_to_waste=0, ) network_parser = parser.add_argument_group("network_args") network_parser.add_argument( f"--pool-type", choices=("avg", "max", None), type=lambda s: None if s == "None" else s, ) network_parser.add_argument(f"--concat", action="store_true") network_parser.add_argument(f"--line-hidden-size", type=int, required=True) network_parser.add_argument(f"--lower-hidden-size", type=int, required=True) for i in range(MAX_LAYERS): network_parser.add_argument(f"--conv-layer{i}", dest="conv_layers", action="append", type=maybe_int) for mod in ("conv", "pool"): for component in ("kernel", "stride"): network_parser.add_argument( f"--{mod}-{component}{i}", dest=f"{mod}_{component}s", action="append", type=maybe_int, ) main(**hierarchical_parse_args(parser))
] mapping = dict(w=(-1, 0), s=(1, 0), a=(0, -1), d=(0, 1), m=("mine"), l=("sell"), g=("goto")) mapping2 = {} for k, v in mapping.items(): try: mapping2[k] = actions.index(v) except ValueError: pass def action_fn(string): action = mapping2.get(string, None) if action is None: return None return np.array(Action(upper=0, lower=action, delta=0, dg=0, ptr=0)) keyboard_control.run(env, action_fn=action_fn) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("--seed", default=0, type=int) main(Env(**hierarchical_parse_args(build_parser(parser))))
def cli(): # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)", ) parser.add_argument("--alpha", type=float, metavar="N", required=True) parser.add_argument("--simple-dataset-size", type=int, metavar="N") parser.add_argument("--num-iterations", type=int, metavar="N") parser.add_argument( "--classifier-epochs", type=int, default=20, metavar="N", help="number of epochs to train (default: 10)", ) parser.add_argument( "--discriminator-epochs", type=int, metavar="N", help="number of epochs to train (default: 10)", ) parser.add_argument("--aux-coef", type=float, default=0.1, metavar="N") discriminator_parser = parser.add_argument_group("discriminator_args") discriminator_parser.add_argument( "--hidden-size", type=int, default=512, metavar="N" ) discriminator_parser.add_argument("--num-hidden", type=int, default=1, metavar="N") discriminator_parser.add_argument( "--activation", type=lambda s: eval(f"nn.{s}"), default=nn.ReLU(), metavar="N" ) classifier_optimizer_parser = parser.add_argument_group("classifier_optimizer_args") classifier_optimizer_parser.add_argument( "--classifier-lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)", ) classifier_optimizer_parser.add_argument( "--classifier-momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)", ) discriminator_optimizer_parser = parser.add_argument_group( "discriminator_optimizer_args" ) discriminator_optimizer_parser.add_argument( "--discriminator-lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)", ) discriminator_optimizer_parser.add_argument( "--discriminator-momentum", type=float, default=0.5, metavar="M", help="SGD momentum (default: 0.5)", ) parser.add_argument("--random-labels", action="store_true") parser.add_argument( "--no-cuda", action="store_true", default=False, help="disables CUDA training" ) parser.add_argument( "--seed", type=int, default=1, metavar="S", help="random seed (default: 1)" ) parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--log-dir", default="/tmp/mnist", metavar="N") parser.add_argument("--run-id", metavar="N", default="") parser.add_argument("--classifier-load-path") parser.add_argument("--discriminator-load-path") main(**hierarchical_parse_args(parser))
parsers.agent.add_argument("--transformer", action="store_true") parsers.agent.add_argument("--fuzz", action="store_true") parsers.agent.add_argument( "--critic-type", choices=["z", "z3", "h1", "combined", "multi-layer"], required=True, ) parsers.agent.add_argument("--hidden2", type=int, required=True) parsers.agent.add_argument("--conv-hidden-size", type=int, required=True) parsers.agent.add_argument("--task-embed-size", type=int, required=True) parsers.agent.add_argument("--lower-embed-size", type=int, required=True) parsers.agent.add_argument("--gate-hidden-size", type=int, required=True) parsers.agent.add_argument("--gate-stride", type=int, required=True) parsers.agent.add_argument("--num-encoding-layers", type=int, required=True) parsers.agent.add_argument("--num-conv-layers", type=int, required=True) parsers.agent.add_argument("--num-edges", type=int, required=True) parsers.agent.add_argument("--gate-coef", type=float, required=True) parsers.agent.add_argument("--no-op-coef", type=float, required=True) parsers.agent.add_argument("--gate-conv-kernel-size", type=int, required=True) parsers.agent.add_argument("--kernel-size", type=int, required=True) parsers.agent.add_argument("--stride", type=int, required=True) return parser if __name__ == "__main__": main(**hierarchical_parse_args(control_flow_args()))
p.add_argument("--reject-while-prob", type=float, required=True) p.add_argument( "--max-world-resamples", type=int, required=default_max_world_resamples is None, default=default_max_world_resamples, ) p.add_argument( "--max-while-loops", type=int, required=default_max_while_loops is None, default=default_max_while_loops, ) p.add_argument("--world-size", type=int, required=True) p.add_argument("--term-on", nargs="+", choices=[Env.sell, Env.mine, Env.goto], required=True) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() build_parser(parser) parser.add_argument("--seed", default=0, type=int) ppo.control_flow.env.main( Env(rank=0, lower_level="train-alone", **hierarchical_parse_args(parser)))
def cli(): # Training settings parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training", ) parser.add_argument("--lr", type=float, default=0.01, metavar="LR", help="learning rate ") parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training") parser.add_argument("--seed", type=int, default=0, metavar="S", help="random seed ") parser.add_argument( "--save-interval", type=int, default=100, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--curriculum-threshold", type=float, default=5e-4, help=" ") parser.add_argument("--aux-coef", type=float, default=0.01, help=" ") parser.add_argument("--max-curriculum", type=int, default=5) parser.add_argument("--log-dir", default="/tmp/mnist", metavar="N", help="") parser.add_argument("--run-id", default="", metavar="N", help="") parser.add_argument("--baseline", action="store_true") four_rooms_parser = parser.add_argument_group("four_rooms_args") # four_rooms_parser.add_argument("--room-size", type=int, default=128) four_rooms_parser.add_argument("--distance", type=float, default=8, help="") four_rooms_parser.add_argument("--len-dataset", type=int, help="") baseline_parser = parser.add_argument_group("baseline_args") baseline_parser.add_argument("--hidden-size", type=int, default=64) deep_hierarchical_parser = parser.add_argument_group( "deep_hierarchical_args") deep_hierarchical_parser.add_argument("--arity", type=int, default=2) deep_hierarchical_parser.add_argument("--num-gru-layers", type=int, default=2) main(**hierarchical_parse_args(parser))
# if self.sim.model.joint_names[self.viewer.active_joint] == 'l_proximal_joint': # if action[self.sim.model.get_] print('delta =', self.viewer.delta) print('action =', action) s, r, t, i = self.step(action * action_scale) return t def main(env_args): env = ControlHSREnv(**env_args) done = False action = np.zeros(space_to_size(env.action_space)) action[0] = 1 while True: if done: env.reset() done = env.control_agent() if __name__ == '__main__': parser = argparse.ArgumentParser() wrapper_parser = parser.add_argument_group('wrapper_args') env_parser = parser.add_argument_group('env_args') hsr.util.add_env_args(env_parser) hsr.util.add_wrapper_args(wrapper_parser) args = hierarchical_parse_args(parser) main_ = hsr.util.env_wrapper(main)(**args)