示例#1
0
    def test_train(self):

        memory_init_size = 100
        step_num = 1500

        sess = tf.InteractiveSession()
        tf.Variable(0, name='global_step', trainable=False)
        agent = DQNAgent(sess=sess,
                         scope='dqn',
                         replay_memory_size=500,
                         replay_memory_init_size=memory_init_size,
                         update_target_estimator_every=100,
                         state_shape=[2],
                         mlp_layers=[10, 10])
        sess.run(tf.global_variables_initializer())

        predicted_action, _ = agent.eval_step({
            'obs':
            np.random.random_sample((2, )),
            'legal_actions': [0, 1]
        })
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)

        for _ in range(step_num):
            ts = [{
                'obs': np.random.random_sample((2, )),
                'legal_actions': [0, 1]
            },
                  np.random.randint(2), 0, {
                      'obs': np.random.random_sample((2, )),
                      'legal_actions': [0, 1]
                  }, True]
            agent.feed(ts)

        predicted_action = agent.step({
            'obs': np.random.random_sample((2, )),
            'legal_actions': [0, 1]
        })
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)

        sess.close()
        tf.reset_default_graph()
示例#2
0
    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    state = env.reset()

    for timestep in range(timesteps):
        action = agent.step(state)
        next_state, reward, done = env.step(action)
        ts = (state, action, reward, next_state, done)
        agent.feed(ts)

        if timestep % evaluate_every == 0:
            rewards = []
            state = eval_env.reset()
            for _ in range(evaluate_num):
                action, _ = agent.eval_step(state)
                _, reward, done = env.step(action)
                if done:
                    rewards.append(reward)
            logger.log_performance(env.timestep, np.mean(rewards))

    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot('DQN')

    # Save model
    save_dir = 'models/uno_single_dqn'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
示例#3
0
class NFSPAgent(object):
    ''' NFSP Agent implementation in TensorFlow.
    '''
    def __init__(self,
                 sess,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.1,
                 batch_size=256,
                 train_every=1,
                 rl_learning_rate=0.1,
                 sl_learning_rate=0.005,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=0.06,
                 q_epsilon_end=0,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_train_every=1,
                 q_mlp_layers=None,
                 evaluate_with='average_policy'):
        ''' Initialize the NFSP agent.

        Args:
            sess (tf.Session): Tensorflow session object.
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            train_every (int): Train the SL policy every X steps.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_train_step (int): Train the model every X steps.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            evaluate_with (string): The value can be 'best_response' or 'average_policy'
        '''
        self.use_raw = False
        self._sess = sess
        self._scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes
        self._batch_size = batch_size
        self._train_every = train_every
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None
        self.evaluate_with = evaluate_with

        # Total timesteps
        self.total_t = 0

        # Step counter to keep track of learning.
        self._step_counter = 0

        with tf.variable_scope(scope):
            # Inner RL agent
            self._rl_agent = DQNAgent(
                sess, scope + '_dqn', q_replay_memory_size,
                q_replay_memory_init_size, q_update_target_estimator_every,
                q_discount_factor, q_epsilon_start, q_epsilon_end,
                q_epsilon_decay_steps, q_batch_size, action_num, state_shape,
                q_train_every, q_mlp_layers, rl_learning_rate)

            with tf.variable_scope('sl'):
                # Build supervised model
                self._build_model()

        self.sample_episode_policy()

    def _build_model(self):
        ''' build the model for supervised learning
        '''
        # Placeholders.
        input_shape = [None]
        input_shape.extend(self._state_shape)
        self._info_state_ph = tf.placeholder(shape=input_shape,
                                             dtype=tf.float32)

        self._X = tf.contrib.layers.flatten(self._info_state_ph)

        # Boolean to indicate whether is training or not
        self.is_train = tf.placeholder(tf.bool, name="is_train")

        # Batch Normalization
        self._X = tf.layers.batch_normalization(self._X, training=True)

        self._action_probs_ph = tf.placeholder(shape=[None, self._action_num],
                                               dtype=tf.float32)

        # Average policy network.
        fc = self._X
        for dim in self._layer_sizes:
            fc = tf.contrib.layers.fully_connected(fc,
                                                   dim,
                                                   activation_fn=tf.tanh)
        self._avg_policy = tf.contrib.layers.fully_connected(
            fc, self._action_num, activation_fn=None)
        self._avg_policy_probs = tf.nn.softmax(self._avg_policy)

        # Loss
        self._loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits_v2(
                labels=tf.stop_gradient(self._action_probs_ph),
                logits=self._avg_policy))

        optimizer = tf.train.AdamOptimizer(
            learning_rate=self._sl_learning_rate, name='nfsp_adam')

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,
                                       scope=tf.get_variable_scope().name)
        with tf.control_dependencies(update_ops):
            self._learn_step = optimizer.minimize(self._loss)

    def feed(self, ts):
        ''' Feed data to inner RL agent

        Args:
            ts (list): A list of 5 elements that represent the transition.
        '''
        self._rl_agent.feed(ts)
        self.total_t += 1
        if self.total_t > 0 and len(
                self._reservoir_buffer
        ) >= self._min_buffer_size_to_learn and self.total_t % self._train_every == 0:
            sl_loss = self.train_sl()
            print('\rINFO - Agent {}, step {}, sl-loss: {}'.format(
                self._scope, self.total_t, sl_loss),
                  end='')

    def step(self, state):
        ''' Returns the action to be taken.

        Args:
            state (dict): The current state

        Returns:
            action (int): An action id
        '''
        obs = state['obs']
        legal_actions = state['legal_actions']
        if self._mode == MODE.best_response:
            probs = self._rl_agent.predict(obs)
            one_hot = np.eye(len(probs))[np.argmax(probs)]
            self._add_transition(obs, one_hot)

        elif self._mode == MODE.average_policy:
            probs = self._act(obs)

        probs = remove_illegal(probs, legal_actions)
        action = np.random.choice(len(probs), p=probs)

        return action

    def eval_step(self, state):
        ''' Use the average policy for evaluation purpose

        Args:
            state (dict): The current state.

        Returns:
            action (int): An action id.
            probs (list): The list of action probabilies
        '''
        if self.evaluate_with == 'best_response':
            action, probs = self._rl_agent.eval_step(state)
        elif self.evaluate_with == 'average_policy':
            obs = state['obs']
            legal_actions = state['legal_actions']
            probs = self._act(obs)
            probs = remove_illegal(probs, legal_actions)
            action = np.random.choice(len(probs), p=probs)
        else:
            raise ValueError(
                "'evaluate_with' should be either 'average_policy' or 'best_response'."
            )
        return action, probs

    def sample_episode_policy(self):
        ''' Sample average/best_response policy
        '''
        if np.random.rand() < self._anticipatory_param:
            self._mode = MODE.best_response
        else:
            self._mode = MODE.average_policy

    def _act(self, info_state):
        ''' Predict action probability givin the observation and legal actions

        Args:
            info_state (numpy.array): An obervation.

        Returns:
            action_probs (numpy.array): The predicted action probability.
        '''
        info_state = np.expand_dims(info_state, axis=0)
        action_probs = self._sess.run(self._avg_policy_probs,
                                      feed_dict={
                                          self._info_state_ph: info_state,
                                          self.is_train: False
                                      })[0]

        return action_probs

    def _add_transition(self, state, probs):
        ''' Adds the new transition to the reservoir buffer.

        Transitions are in the form (state, probs).

        Args:
            state (numpy.array): The state.
            probs (numpy.array): The probabilities of each action.
        '''
        transition = Transition(info_state=state, action_probs=probs)
        self._reservoir_buffer.add(transition)

    def train_sl(self):
        ''' Compute the loss on sampled transitions and perform a avg-network update.

        If there are not enough elements in the buffer, no loss is computed and
        `None` is returned instead.

        Returns:
            loss (float): The average loss obtained on this batch of transitions or `None`.
        '''
        if (len(self._reservoir_buffer) < self._batch_size or
                len(self._reservoir_buffer) < self._min_buffer_size_to_learn):
            return None

        transitions = self._reservoir_buffer.sample(self._batch_size)
        info_states = [t.info_state for t in transitions]
        action_probs = [t.action_probs for t in transitions]

        loss, _ = self._sess.run(
            [self._loss, self._learn_step],
            feed_dict={
                self._info_state_ph: info_states,
                self._action_probs_ph: action_probs,
                self.is_train: True,
            })

        return loss