示例#1
0
class MocsarPreDQNPytorchModel(Model):
    ''' A pretrained PyTorch model on Mocsar with DQN, against Min agents
    '''
    def __init__(self, **kwargs):
        ''' Load pretrained model
        '''
        import torch
        from rlcard3.agents.dqn_agent_pytorch import DQNAgent as DQNAgentPytorch
        num_players, action_num, state_shape = kwargs['num_players'], kwargs[
            'action_num'], kwargs['state_shape']
        self.num_players = num_players
        self.agent = DQNAgentPytorch(
            scope='dqn',
            action_num=action_num,
            replay_memory_init_size=1000,  # Not important while not training
            train_every=1,  # Not important while not training
            state_shape=state_shape,
            mlp_layers=[512, 512],
            device=torch.device('cuda'))
        self._local_init()

    def _local_init(self):
        self._init_end(chkp='mocsar_dqn_ra_pytorch/model.pth',
                       aid="k",
                       aname="PreDQNPytorch")

    def _init_end(self, chkp: str, aid: str, aname: str):
        import torch
        check_point_path = os.path.join(ROOT_PATH, chkp)
        checkpoint = torch.load(check_point_path)
        self.agent.load(checkpoint)
        self.agent.id = aid
        self.agent.name = aname

    @property
    def agents(self):
        ''' Get a list of agents for each position in a the game

        Returns:
            agents (list): A list of agents

        Note: Each agent should be just like RL agent with step and eval_step
              functioning well.
        '''
        return [self.agent for _ in range(self.num_players)]
示例#2
0
 def __init__(self, **kwargs):
     ''' Load pretrained model
     '''
     import torch
     from rlcard3.agents.dqn_agent_pytorch import DQNAgent as DQNAgentPytorch
     num_players, action_num, state_shape = kwargs['num_players'], kwargs[
         'action_num'], kwargs['state_shape']
     self.num_players = num_players
     self.agent = DQNAgentPytorch(
         scope='dqn',
         action_num=action_num,
         replay_memory_init_size=1000,  # Not important while not training
         train_every=1,  # Not important while not training
         state_shape=state_shape,
         mlp_layers=[512, 512],
         device=torch.device('cuda'))
     self._local_init()
    def test_init(self):

        agent = DQNAgent(scope='dqn',
                         replay_memory_size=0,
                         replay_memory_init_size=0,
                         update_target_estimator_every=0,
                         discount_factor=0,
                         epsilon_start=0,
                         epsilon_end=0,
                         epsilon_decay_steps=0,
                         batch_size=0,
                         action_num=2,
                         state_shape=[1],
                         mlp_layers=[10, 10],
                         device=torch.device('cpu'))

        self.assertEqual(agent.replay_memory_init_size, 0)
        self.assertEqual(agent.update_target_estimator_every, 0)
        self.assertEqual(agent.discount_factor, 0)
        self.assertEqual(agent.epsilon_decay_steps, 0)
        self.assertEqual(agent.batch_size, 0)
        self.assertEqual(agent.action_num, 2)
    def test_train(self):

        memory_init_size = 100
        step_num = 1500

        agent = DQNAgent(scope='dqn',
                         replay_memory_size=500,
                         replay_memory_init_size=memory_init_size,
                         update_target_estimator_every=100,
                         state_shape=[2],
                         mlp_layers=[10, 10],
                         device=torch.device('cpu'))

        predicted_action, _ = agent.eval_step({
            'obs':
            np.random.random_sample((2, )),
            'legal_actions': [0, 1]
        })
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)

        for _ in range(step_num):
            ts = [{
                'obs': np.random.random_sample((2, )),
                'legal_actions': [0, 1]
            },
                  np.random.randint(2), 0, {
                      'obs': np.random.random_sample((2, )),
                      'legal_actions': [0, 1]
                  }, True]
            agent.feed(ts)
        state_dict = agent.get_state_dict()
        self.assertIsInstance(state_dict, dict)

        predicted_action = agent.step({
            'obs': np.random.random_sample((2, )),
            'legal_actions': [0, 1]
        })
        self.assertGreaterEqual(predicted_action, 0)
        self.assertLessEqual(predicted_action, 1)
示例#5
0
env, eval_env = init_environment(conf=conf,
                                 env_id='mocsar-cfg',
                                 config={'multi_agent_mode': True})
# parameter variables
evaluate_num, evaluate_every, memory_init_size, train_every, episode_num = init_vars(
    conf=conf)
# The paths for saving the logs and learning curves
log_dir = './experiments/mocsar_dqn_ra_pytorch_result/'

# Set a global seed
set_global_seed(0)

agent = DQNAgent(scope='dqn',
                 action_num=env.action_num,
                 replay_memory_init_size=memory_init_size,
                 train_every=train_every,
                 state_shape=env.state_shape,
                 mlp_layers=[512, 512],
                 device=torch.device('cuda'))

random_agent = RandomAgent(action_num=eval_env.action_num)

# Other agents
env.model.create_agents({"mocsar_min": 4})
env_agent_list = [env.model.rule_agents[i] for i in range(1, 4)]
env_agent_list.insert(0, agent)
env.set_agents(env_agent_list)

# Evaluation agent
eval_env.model.create_agents({"mocsar_random": 4})
eval_agent_list = [eval_env.model.rule_agents[i] for i in range(1, 4)]
    def __init__(self,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.1,
                 batch_size=256,
                 train_every=1,
                 rl_learning_rate=0.1,
                 sl_learning_rate=0.005,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=0.06,
                 q_epsilon_end=0,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_train_every=1,
                 q_mlp_layers=None,
                 evaluate_with='average_policy',
                 device=None):
        ''' Initialize the NFSP agent.

        Args:
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            train_every (int): Train the SL policy every X steps.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_train_step (int): Train the model every X steps.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            device (torch.device): Whether to use the cpu or gpu
        '''
        self.use_raw = False
        self._scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes + [action_num]
        self._batch_size = batch_size
        self._train_every = train_every
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None
        self.evaluate_with = evaluate_with

        if device is None:
            self.device = torch.device(
                'cuda:0' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device

        # Total timesteps
        self.total_t = 0

        # Step counter to keep track of learning.
        self._step_counter = 0

        # Build the action-value network
        self._rl_agent = DQNAgent(scope+'_dqn', q_replay_memory_size, q_replay_memory_init_size, \
            q_update_target_estimator_every, q_discount_factor, q_epsilon_start, q_epsilon_end, \
            q_epsilon_decay_steps, q_batch_size, action_num, state_shape, q_train_every, q_mlp_layers, \
            rl_learning_rate, device)

        # Build the average policy supervised model
        self._build_model()

        self.sample_episode_policy()
class NFSPAgent(object):
    ''' An approximate clone of rlcard3.agents.nfsp_agent that uses
    pytorch instead of tensorflow.  Note that this implementation
    differs from Henrich and Silver (2016) in that the supervised
    training minimizes cross-entropy with respect to the stored
    action probabilities rather than the realized actions.
    '''
    def __init__(self,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.1,
                 batch_size=256,
                 train_every=1,
                 rl_learning_rate=0.1,
                 sl_learning_rate=0.005,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=0.06,
                 q_epsilon_end=0,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_train_every=1,
                 q_mlp_layers=None,
                 evaluate_with='average_policy',
                 device=None):
        ''' Initialize the NFSP agent.

        Args:
            scope (string): The name scope of NFSPAgent.
            action_num (int): The number of actions.
            state_shape (list): The shape of the state space.
            hidden_layers_sizes (list): The hidden layers sizes for the layers of
              the average policy.
            reservoir_buffer_capacity (int): The size of the buffer for average policy.
            anticipatory_param (float): The hyper-parameter that balances rl/avarage policy.
            batch_size (int): The batch_size for training average policy.
            train_every (int): Train the SL policy every X steps.
            rl_learning_rate (float): The learning rate of the RL agent.
            sl_learning_rate (float): the learning rate of the average policy.
            min_buffer_size_to_learn (int): The minimum buffer size to learn for average policy.
            q_replay_memory_size (int): The memory size of inner DQN agent.
            q_replay_memory_init_size (int): The initial memory size of inner DQN agent.
            q_update_target_estimator_every (int): The frequency of updating target network for
              inner DQN agent.
            q_discount_factor (float): The discount factor of inner DQN agent.
            q_epsilon_start (float): The starting epsilon of inner DQN agent.
            q_epsilon_end (float): the end epsilon of inner DQN agent.
            q_epsilon_decay_steps (int): The decay steps of inner DQN agent.
            q_batch_size (int): The batch size of inner DQN agent.
            q_train_step (int): Train the model every X steps.
            q_mlp_layers (list): The layer sizes of inner DQN agent.
            device (torch.device): Whether to use the cpu or gpu
        '''
        self.use_raw = False
        self._scope = scope
        self._action_num = action_num
        self._state_shape = state_shape
        self._layer_sizes = hidden_layers_sizes + [action_num]
        self._batch_size = batch_size
        self._train_every = train_every
        self._sl_learning_rate = sl_learning_rate
        self._anticipatory_param = anticipatory_param
        self._min_buffer_size_to_learn = min_buffer_size_to_learn

        self._reservoir_buffer = ReservoirBuffer(reservoir_buffer_capacity)
        self._prev_timestep = None
        self._prev_action = None
        self.evaluate_with = evaluate_with

        if device is None:
            self.device = torch.device(
                'cuda:0' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device

        # Total timesteps
        self.total_t = 0

        # Step counter to keep track of learning.
        self._step_counter = 0

        # Build the action-value network
        self._rl_agent = DQNAgent(scope+'_dqn', q_replay_memory_size, q_replay_memory_init_size, \
            q_update_target_estimator_every, q_discount_factor, q_epsilon_start, q_epsilon_end, \
            q_epsilon_decay_steps, q_batch_size, action_num, state_shape, q_train_every, q_mlp_layers, \
            rl_learning_rate, device)

        # Build the average policy supervised model
        self._build_model()

        self.sample_episode_policy()

    def _build_model(self):
        ''' Build the average policy network
        '''

        # configure the average policy network
        policy_network = AveragePolicyNetwork(self._action_num,
                                              self._state_shape,
                                              self._layer_sizes)
        policy_network = policy_network.to(self.device)
        self.policy_network = policy_network
        self.policy_network.eval()

        # xavier init
        for p in self.policy_network.parameters():
            if len(p.data.shape) > 1:
                nn.init.xavier_uniform_(p.data)

        # configure optimizer
        self.policy_network_optimizer = torch.optim.Adam(
            self.policy_network.parameters(), lr=self._sl_learning_rate)

    def feed(self, ts):
        ''' Feed data to inner RL agent

        Args:
            ts (list): A list of 5 elements that represent the transition.
        '''
        self._rl_agent.feed(ts)
        self.total_t += 1
        if self.total_t > 0 and len(
                self._reservoir_buffer
        ) >= self._min_buffer_size_to_learn and self.total_t % self._train_every == 0:
            sl_loss = self.train_sl()
            print('\rINFO - Agent {}, step {}, sl-loss: {}'.format(
                self._scope, self.total_t, sl_loss),
                  end='')

    def step(self, state):
        ''' Returns the action to be taken.

        Args:
            state (dict): The current state

        Returns:
            action (int): An action id
        '''
        obs = state['obs']
        legal_actions = state['legal_actions']
        if self._mode == MODE.best_response:
            probs = self._rl_agent.predict(obs)
            self._add_transition(obs, probs)

        elif self._mode == MODE.average_policy:
            probs = self._act(obs)

        probs = remove_illegal(probs, legal_actions)
        action = np.random.choice(len(probs), p=probs)

        return action

    def eval_step(self, state):
        ''' Use the average policy for evaluation purpose

        Args:
            state (dict): The current state.

        Returns:
            action (int): An action id.
        '''
        if self.evaluate_with == 'best_response':
            action, probs = self._rl_agent.eval_step(state)
        elif self.evaluate_with == 'average_policy':
            obs = state['obs']
            legal_actions = state['legal_actions']
            probs = self._act(obs)
            probs = remove_illegal(probs, legal_actions)
            action = np.random.choice(len(probs), p=probs)
        else:
            raise ValueError(
                "'evaluate_with' should be either 'average_policy' or 'best_response'."
            )
        return action, probs

    def sample_episode_policy(self):
        ''' Sample average/best_response policy
        '''
        if np.random.rand() < self._anticipatory_param:
            self._mode = MODE.best_response
        else:
            self._mode = MODE.average_policy

    def _act(self, info_state):
        ''' Predict action probability givin the observation and legal actions
            Not connected to computation graph
        Args:
            info_state (numpy.array): An obervation.

        Returns:
            action_probs (numpy.array): The predicted action probability.
        '''
        info_state = np.expand_dims(info_state, axis=0)
        info_state = torch.from_numpy(info_state).float().to(self.device)

        with torch.no_grad():
            log_action_probs = self.policy_network(info_state).cpu().numpy()

        action_probs = np.exp(log_action_probs)[0]

        return action_probs

    def _add_transition(self, state, probs):
        ''' Adds the new transition to the reservoir buffer.

        Transitions are in the form (state, probs).

        Args:
            state (numpy.array): The state.
            probs (numpy.array): The probabilities of each action.
        '''
        transition = Transition(info_state=state, action_probs=probs)
        self._reservoir_buffer.add(transition)

    def train_sl(self):
        ''' Compute the loss on sampled transitions and perform a avg-network update.

        If there are not enough elements in the buffer, no loss is computed and
        `None` is returned instead.

        Returns:
            loss (float): The average loss obtained on this batch of transitions or `None`.
        '''
        if (len(self._reservoir_buffer) < self._batch_size or
                len(self._reservoir_buffer) < self._min_buffer_size_to_learn):
            return None

        transitions = self._reservoir_buffer.sample(self._batch_size)
        info_states = [t.info_state for t in transitions]
        action_probs = [t.action_probs for t in transitions]

        self.policy_network_optimizer.zero_grad()
        self.policy_network.train()

        # (batch, state_size)
        info_states = torch.from_numpy(np.array(info_states)).float().to(
            self.device)

        # (batch, action_num)
        eval_action_probs = torch.from_numpy(
            np.array(action_probs)).float().to(self.device)

        # (batch, action_num)
        log_forecast_action_probs = self.policy_network(info_states)

        ce_loss = -(eval_action_probs *
                    log_forecast_action_probs).sum(dim=-1).mean()
        ce_loss.backward()

        self.policy_network_optimizer.step()
        ce_loss = ce_loss.item()
        self.policy_network.eval()

        return ce_loss

    def get_state_dict(self):
        ''' Get the state dict to save models

        Returns:
            (dict): A dict of model states
        '''
        state_dict = self._rl_agent.get_state_dict()
        state_dict[self._scope] = self.policy_network.state_dict()
        return state_dict

    def load(self, checkpoint):
        ''' Load model

        Args:
            checkpoint (dict): the loaded state
        '''
        self.policy_network.load_state_dict(checkpoint[self._scope])