def launch_experiment(script, run_slot, affinity_code, log_dir, variant,
                      run_ID, args):
    """Launches one learning run using ``subprocess.Popen()`` to call the
    python script.  Calls the script as:
    ``python {script} {slot_affinity_code} {log_dir} {run_ID} {*args}``
    If ``affinity_code["all_cpus"]`` is provided, then the call is prepended
    with ``tasket -c ..`` and the listed cpus (this is the most sure way to
    keep the run limited to these CPU cores).  Also saves the `variant` file.
    Returns the process handle, which can be monitored.
    """
    slot_affinity_code = prepend_run_slot(run_slot, affinity_code)
    affinity = affinity_from_code(slot_affinity_code)
    call_list = list()
    if isinstance(affinity, dict) and affinity.get("all_cpus", False):
        cpus = ",".join(str(c) for c in affinity["all_cpus"])
    elif isinstance(affinity, list) and affinity[0].get("all_cpus", False):
        cpus = ",".join(str(c) for aff in affinity for c in aff["all_cpus"])
    else:
        cpus = ()
    if cpus:
        call_list += ["taskset", "-c",
                      cpus]  # PyTorch obeys better than just psutil.
    call_list += ["python", script, slot_affinity_code, log_dir, str(run_ID)]
    call_list += [str(a) for a in args]
    save_variant(variant, log_dir)
    print("\ncall string:\n", " ".join(call_list))
    p = subprocess.Popen(call_list)
    return p
示例#2
0
def launch_experiment(
    script,
    run_slot,
    affinity_code,
    log_dir,
    variant,
    run_ID,
    args,
    python_executable=None,
    set_egl_device=False,
):
    """Launches one learning run using ``subprocess.Popen()`` to call the
    python script.  Calls the script as:
    ``python {script} {slot_affinity_code} {log_dir} {run_ID} {*args}``

    If ``affinity_code["all_cpus"]`` is provided, then the call is prepended
    with ``tasket -c ..`` and the listed cpus (this is the most sure way to
    keep the run limited to these CPU cores).  Also saves the `variant` file.
    Returns the process handle, which can be monitored.
   
    Use ``set_egl_device=True`` to set an environment variable
    ``EGL_DEVICE_ID`` equal to the same value as the cuda index for the
    algorithm.  For example, can use with DMControl environment modified
    to look for this environment variable when selecting a GPU for headless
    rendering.
    """
    slot_affinity_code = prepend_run_slot(run_slot, affinity_code)
    affinity = affinity_from_code(slot_affinity_code)
    call_list = list()
    if isinstance(affinity, dict) and affinity.get("all_cpus", False):
        cpus = ",".join(str(c) for c in affinity["all_cpus"])
    elif isinstance(affinity, list) and affinity[0].get("all_cpus", False):
        cpus = ",".join(str(c) for aff in affinity for c in aff["all_cpus"])
    else:
        cpus = ()
    if cpus:
        call_list += ["taskset", "-c",
                      cpus]  # PyTorch obeys better than just psutil.
    py = python_executable if python_executable else sys.executable or "python"
    call_list += [py, script, slot_affinity_code, log_dir, str(run_ID)]
    call_list += [str(a) for a in args]
    save_variant(variant, log_dir)
    print("\ncall string:\n", " ".join(call_list))
    print(os.getcwd())
    if set_egl_device and affinity.get("cuda_idx", None) is not None:
        egl_device_id = str(affinity["cuda_idx"])
        egl_env = os.environ.copy()
        egl_env["EGL_DEVICE_ID"] = egl_device_id
        print(f"Assigning EGL_DEVICE_ID={egl_device_id}")
        p = subprocess.Popen(call_list, env=egl_env)
    else:
        p = subprocess.Popen(call_list)
    return p
示例#3
0
def launch_experiment(script, run_slot, affinity_code, log_dir, variant,
                      run_ID, args):
    slot_affinity_code = prepend_run_slot(run_slot, affinity_code)
    affinity = affinity_from_code(slot_affinity_code)
    call_list = list()
    if isinstance(affinity, dict) and affinity.get("all_cpus", False):
        cpus = ",".join(str(c) for c in affinity["all_cpus"])
    elif isinstance(affinity, list) and affinity[0].get("all_cpus", False):
        cpus = ",".join(str(c) for aff in affinity for c in aff["all_cpus"])
    else:
        cpus = ()
    if cpus:
        call_list += ["taskset", "-c",
                      cpus]  # PyTorch obeys better than just psutil.
    call_list += ["python", script, slot_affinity_code, log_dir, str(run_ID)]
    call_list += [str(a) for a in args]
    save_variant(variant, log_dir)
    print("\ncall string:\n", " ".join(call_list))
    p = subprocess.Popen(call_list)
    return p