def loadResources(self): AbstractIterativeLearner.loadResources(self) AbstractSupervisedLearner.loadResources(self) #Y = self.resource_pool[data_sources.TRAIN_LABELS] #self.setLabels(Y) X = self.resource_pool[data_sources.TRAIN_FEATURES] self.X = csc_matrix(X.T) if self.resource_pool.has_key('bias'): self.bias = float(self.resource_pool['bias']) if self.bias != 0.: bias_slice = sqrt(self.bias)*np.mat(ones((1,self.X.shape[1]),dtype=np.float64)) self.X = sparse.vstack([self.X,bias_slice]).tocsc() else: self.bias = 0. self.X_csr = self.X.tocsr() if (data_sources.VALIDATION_FEATURES in self.resource_pool) and (data_sources.VALIDATION_LABELS in self.resource_pool): validation_X = self.resource_pool[data_sources.VALIDATION_FEATURES] validation_Y = self.resource_pool[data_sources.VALIDATION_LABELS] self.callbackfun = EarlyStopCB(validation_X, validation_Y)
def loadResources(self): """ Loads the resources from the previously set resource pool. @raise Exception: when some of the resources required by the learner is not available in the ResourcePool object. """ AbstractIterativeLearner.loadResources(self) AbstractSupervisedLearner.loadResources(self) self.Y = Y #Number of training examples self.size = Y.shape[0] if not Y.shape[1] == 1: raise Exception('GreedyRLS currently supports only one output at a time. The output matrix is now of shape ' + str(Y.shape) + '.') X = self.resource_pool['train_features'] if isinstance(X, scipy.sparse.base.spmatrix): self.X = X.todense() else: self.X = X
def loadResources(self): """ Loads the resources from the previously set resource pool. @raise Exception: when some of the resources required by the learner is not available in the ResourcePool object. """ AbstractIterativeLearner.loadResources(self) AbstractSupervisedLearner.loadResources(self) self.Y = Y # Number of training examples self.size = Y.shape[0] if not Y.shape[1] == 1: raise Exception( "GreedyRLS currently supports only one output at a time. The output matrix is now of shape " + str(Y.shape) + "." ) X = self.resource_pool["train_features"] if isinstance(X, scipy.sparse.base.spmatrix): self.X = X.todense() else: self.X = X