示例#1
0
def evalFunc_Violations(individual, Original, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    array = decoder.resolveRoleModelChromosomeIntoBoolArray(
        individual[0], userSize, permissionSize)
    conf, accs = matrixOps.compareMatrices(array, Original)
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        worstCase_fitness = 3
        fitness = worstCase_fitness
    else:
        '''worstCase_accs = Original.sum() # All permissions are assigned directly to user
        bestCase_accs = 0 # No direct assignements required
        range_accs = worstCase_accs-bestCase_accs+1
        accs_normalized = (accs-bestCase_accs+1)/range_accs

        worstCase_conf = Original.size - Original.sum() # All permissions are assigned directly to user
        bestCase_conf = 0 # No direct assignements required
        range_conf = worstCase_conf-bestCase_conf+1
        conf_normalized = (conf-bestCase_conf+1)/range_conf

        fitness = (conf_normalized+accs_normalized)'''
        fitness = (conf + accs)

    return fitness,
示例#2
0
def evalFunc_WSC(individual, Original, weights, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        fitness = len(weights)
    else:
        numberOfRoles = len(individual[0])
        array = decoder.resolveRoleModelChromosomeIntoBoolArray(
            individual[0], userSize, permissionSize)
        conf, accs = matrixOps.compareMatrices(array, Original)
        numberOfUR = statistics.URCnt(individual[0])
        numberOfRP = statistics.RPCnt(individual[0])

        w1 = weights[0]
        w2 = weights[1]
        w3 = weights[2]
        w4 = weights[3]

        worstCase_numberOfRoles = min(userSize, permissionSize)
        numberOfRoles_normalized = utils.normalization(
            numberOfRoles, 1, worstCase_numberOfRoles)
        accs_normalized = utils.normalization(accs, 0, Original.sum())
        numberOfUR_normalized = utils.normalization(
            numberOfUR, userSize, userSize * worstCase_numberOfRoles)
        numberOfRP_normalized = utils.normalization(
            numberOfRP, permissionSize,
            permissionSize * worstCase_numberOfRoles)

        fitness = (w1 * numberOfRoles_normalized + w2 * numberOfUR_normalized +
                   w3 * numberOfRP_normalized + w4 * accs_normalized)

    return fitness,
示例#3
0
def evalFunc_FBasicMin(individual, Original, weights, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        fitness = len(weights)
    else:
        numberOfRoles = len(individual[0])
        array = decoder.resolveRoleModelChromosomeIntoBoolArray(
            individual[0], userSize, permissionSize)
        conf, accs = matrixOps.compareMatrices(array, Original)

        w1 = weights[0]
        w2 = weights[1]
        w3 = weights[2]

        numberOfRoles_normalized = utils.normalization(
            numberOfRoles, 1, min(userSize, permissionSize))
        accs_normalized = utils.normalization(accs, 0, Original.sum())
        conf_normalized = utils.normalization(conf, 0,
                                              Original.size - Original.sum())

        fitness = w1 * numberOfRoles_normalized + w2 * conf_normalized + w3 * accs_normalized

    return fitness,
示例#4
0
def feasible(individual, userSize, permissionSize, constraints):
    array = decoder.resolveRoleModelChromosomeIntoBoolArray(
        individual[0], userSize, permissionSize)
    for c in constraints:
        permission1 = numpy.matrix(array)[:, c[0]]
        permission2 = numpy.matrix(array)[:, c[1]]
        for u in range(0, userSize):
            if (bool(permission1[u]) and bool(permission2[u])):
                return False
    return True
示例#5
0
def evalFunc_WSC_Star_RoleDis(individual,
                              Original,
                              weights,
                              population,
                              constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        fitness = len(weights)
    else:
        numberOfRoles = len(individual[0])
        array = decoder.resolveRoleModelChromosomeIntoBoolArray(
            individual[0], userSize, permissionSize)
        conf, accs = matrixOps.compareMatrices(array, Original)
        numberOfUR = statistics.URCnt(individual[0])
        numberOfRP = statistics.RPCnt(individual[0])

        count = 0
        for rm in population:
            count += len(rm[0])
        numberOfRolesInPop = count / len(population)
        roleDis = abs(numberOfRolesInPop - numberOfRoles)
        if (roleDis < 3):
            roleDis = 0

        w1 = weights[0]
        w2 = weights[1]
        w3 = weights[2]
        w4 = weights[3]
        w5 = weights[4]
        w6 = weights[5]

        worstCase_numberOfRoles = min(userSize, permissionSize)
        numberOfRoles_normalized = utils.normalization(
            numberOfRoles, 1, worstCase_numberOfRoles)
        accs_normalized = utils.normalization(accs, 0, Original.sum())
        conf_normalized = utils.normalization(conf, 0,
                                              Original.size - Original.sum())
        numberOfUR_normalized = utils.normalization(
            numberOfUR, userSize, userSize * worstCase_numberOfRoles)
        numberOfRP_normalized = utils.normalization(
            numberOfRP, permissionSize,
            permissionSize * worstCase_numberOfRoles)
        roleDis_normalized = utils.normalization(
            roleDis, 0,
            max(numberOfRolesInPop, permissionSize - numberOfRolesInPop,
                userSize - numberOfRolesInPop))

        fitness = (w1 * numberOfRoles_normalized + w2 * numberOfUR_normalized +
                   w3 * numberOfRP_normalized + w4 * accs_normalized +
                   w5 * conf_normalized + w6 * roleDis_normalized)

    return fitness,
示例#6
0
def evalFunc_Saenko_Euclidean(individual, Original, weights, constraints=[]):
    userSize = Original.shape[0]
    permissionSize = Original.shape[1]
    if (constraints and
            not feasible(individual, userSize, permissionSize, constraints)):
        fitness = 0
    else:
        numberOfRoles = len(individual[0])
        array = decoder.resolveRoleModelChromosomeIntoBoolArray(
            individual[0], userSize, permissionSize)
        dist = numpy.linalg.norm(
            array - numpy.matrix(Original, dtype=bool)
        )  #Frobenius norm, also called the Euclidean norm
        w1 = weights[0]
        w2 = weights[1]
        fitness = (w1 * numberOfRoles + w2 * dist)**(-1)
    return fitness,
示例#7
0
def Conf(rolemodel, Original):
    array = decoder.resolveRoleModelChromosomeIntoBoolArray(rolemodel, Original.shape[0], Original.shape[1])
    conf, accs = matrixOps.compareMatrices(array,Original)
    return int(conf)
def evolution(Original,
              evalFunc,
              populationSize,
              tournsize,
              CXPB,
              MUTPB_All,
              addRolePB,
              removeRolePB,
              removeUserPB,
              removePermissionPB,
              addUserPB,
              addPermissionPB,
              NGEN,
              freq,
              numberTopRoleModels,
              optimization,
              untilSolutionFound=False,
              eval_weights=[],
              pickleFile="",
              checkpoint=False,
              prevFiles="",
              userAttributeValues=[],
              constraints=[],
              printPopulations=False,
              pop_directory="",
              fixedRoleCnt=0):

    logger.info("Prepare evolutionary algorithm...")
    time = []
    results = defaultdict(list)
    genStart = 0
    population = []

    # Create Logbook
    logbook = tools.Logbook()

    # Register Optimization
    if (evalFunc == "FBasic" or evalFunc == "FEdge"):
        creator.create("FitnessMinMax", base.Fitness,
                       weights=(1.0, ))  # MAXIMIZATION
    else:
        creator.create("FitnessMinMax", base.Fitness,
                       weights=(-1.0, ))  # MINIMIZATION
    creator.create("Individual", list, fitness=creator.FitnessMinMax)

    # Get Checkpoint
    '''if (checkpoint and len(prevFiles)!=0):
        prevFile = prevFiles[0]
        if (os.path.isfile(prevFile)):
            print("Read checkpoint...")
            cp = pickle.load(open(prevFile, "rb"))
            population = cp["population"]
            genStart = int(cp["generation"])
            Original = cp["Original"]
            results=cp["results"]
            time=cp["time"]
            prevFiles=cp["prevFiles"]
            prevFiles.append(prevFile)
            logbook=cp["logbook"]
            random.setstate(cp["rndstate"])
            print("DONE.\n")
        else:
            raise ValueError("Checkpoint file does not exit")
    else:
        print("Use checkpoint: False")
        checkpoint = False'''

    userSize = int(Original.shape[0])
    permissionSize = int(Original.shape[1])

    # Toolbox
    toolbox = base.Toolbox()
    # Register Chromosome Generator
    toolbox.register("chromosome",
                     init.generateChromosome,
                     maxRoles=userSize,
                     userSize=userSize,
                     permissionSize=permissionSize,
                     optimization=optimization,
                     fixedRoleCnt=fixedRoleCnt)
    # Register Individual and Population Initializers
    toolbox.register("individual", tools.initRepeat, creator.Individual,
                     toolbox.chromosome, 1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    # Register Evaluation Function
    if (evalFunc == "FBasic"):
        toolbox.register("evaluate",
                         evals.evalFunc_FBasic,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "FEdge"):
        toolbox.register("evaluate",
                         evals.evalFunc_FEdge,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)

    elif (evalFunc == "FBasicMin"):
        toolbox.register("evaluate",
                         evals.evalFunc_FBasicMin,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "FEdgeMin"):
        toolbox.register("evaluate",
                         evals.evalFunc_FEdgeMin,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)

    elif (evalFunc == "FBasicMin_INT"):
        toolbox.register("evaluate",
                         evals.evalFunc_FBasicMin_INT,
                         Original=Original,
                         weights=eval_weights,
                         userAttributeValues=userAttributeValues,
                         constraints=constraints)
    elif (evalFunc == "FEdgeMin_INT"):
        toolbox.register("evaluate",
                         evals.evalFunc_FEdgeMin_INT,
                         Original=Original,
                         weights=eval_weights,
                         userAttributeValues=userAttributeValues,
                         constraints=constraints)

    elif (evalFunc == "WSC"):
        toolbox.register("evaluate",
                         evals.evalFunc_WSC,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "WSC_Star"):
        toolbox.register("evaluate",
                         evals.evalFunc_WSC_Star,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)
    elif (evalFunc == "WSC_Star_RoleDis"):
        toolbox.register("evaluate",
                         evals.evalFunc_WSC_Star_RoleDis,
                         Original=Original,
                         weights=eval_weights,
                         constraints=constraints)

    elif (evalFunc == "Violations"):
        toolbox.register("evaluate",
                         evals.evalFunc_Violations,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "AvgRoleConf_A"):
        toolbox.register("evaluate",
                         evals.evalFunc_AvgRoleConfViolations_Availability,
                         Original=Original,
                         constraints=constraints)

    elif (evalFunc == "Confidentiality"):
        toolbox.register("evaluate",
                         evals.evalFunc_Confidentiality,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "Availability"):
        toolbox.register("evaluate",
                         evals.evalFunc_Availability,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "RoleCnt"):
        toolbox.register("evaluate",
                         evals.evalFunc_RoleCnt,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "URCnt"):
        toolbox.register("evaluate",
                         evals.evalFunc_URCnt,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "RPCnt"):
        toolbox.register("evaluate",
                         evals.evalFunc_RPCnt,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "AvgRoleConf"):
        toolbox.register("evaluate",
                         evals.evalFunc_AvgRoleConfViolations,
                         Original=Original,
                         constraints=constraints)
    elif (evalFunc == "Interpretability"):
        toolbox.register("evaluate",
                         evals.evalFunc_Interpretability,
                         Original=Original,
                         userAttributeValues=userAttributeValues,
                         constraints=constraints)

    else:
        raise ValueError('Evaluation function not known')

    # Register Variation Operators
    toolbox.register("mate", operators.mateFunc, optimization=optimization)
    toolbox.register("mutate",
                     operators.mutFunc,
                     addRolePB=addRolePB,
                     removeRolePB=removeRolePB,
                     removeUserPB=removeUserPB,
                     removePermissionPB=removePermissionPB,
                     addUserPB=addUserPB,
                     addPermissionPB=addPermissionPB,
                     userSize=userSize,
                     permissionSize=permissionSize,
                     optimization=[optimization, optimization])
    toolbox.register("select", tools.selTournament, tournsize=tournsize)

    # Register Statistics
    statsFitness = tools.Statistics(key=lambda ind: ind.fitness.values[0])
    statsConf = tools.Statistics(
        key=lambda ind: statistics.Conf(ind[0], Original))
    statsAccs = tools.Statistics(
        key=lambda ind: statistics.Accs(ind[0], Original))
    statsRoleCnt = tools.Statistics(key=lambda ind: statistics.RoleCnt(ind[0]))
    statsURCnt = tools.Statistics(key=lambda ind: statistics.URCnt(ind[0]))
    statsRPCnt = tools.Statistics(key=lambda ind: statistics.RPCnt(ind[0]))
    statsInterp = tools.Statistics(
        key=lambda ind: statistics.Interp(ind[0], userAttributeValues))
    mstats = tools.MultiStatistics(Fitness=statsFitness,
                                   Conf=statsConf,
                                   Accs=statsAccs,
                                   RoleCnt=statsRoleCnt,
                                   URCnt=statsURCnt,
                                   RPCnt=statsRPCnt,
                                   Interp=statsInterp)
    mstats.register("avg", numpy.mean)
    mstats.register("std", numpy.std)
    mstats.register("min", numpy.min)
    mstats.register("max", numpy.max)
    logbook.header = "gen", "evals"
    logbook.chapters["Fitness"].header = "min", "avg", "max", "std"
    logbook.chapters["Conf"].header = "min", "avg", "max", "std"
    logbook.chapters["Accs"].header = "min", "avg", "max", "std"
    logbook.chapters["RoleCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["URCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["RPCnt"].header = "min", "avg", "max", "std"
    logbook.chapters["Interp"].header = "min", "avg", "max", "std"

    # Creating the population
    if (not population):
        logger.info("Generate new population of " + str(populationSize) +
                    " individuals")
        population = toolbox.population(n=populationSize)

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    if (evalFunc == "WSC_Star_RoleDis"):
        fitnesses = [
            toolbox.evaluate(population=population, individual=ind)
            for ind in invalid_ind
        ]
    else:
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    # Save population in JSON file
    if (printPopulations):
        pop_subdirectory = pop_directory + "\\Generation_" + str(genStart)
        #if not os.path.exists(pop_subdirectory):
        #    os.makedirs(pop_subdirectory)
        utils.saveDiversity(genStart, population,
                            pop_subdirectory + "_diversity.json")
        utils.savePopulation(genStart, population,
                             pop_subdirectory + "_population.pkl")
        #visual.showBestResult(population, genStart, Original, pop_subdirectory+"\\Individual", "Individual", "Individual from Generation "+str(genStart), False, False, True, False)

    # Log statistics for first generation
    if ((len(logbook) == 0)
            or (logbook.pop(len(logbook) - 1)["gen"] != genStart)):
        record = mstats.compile(population)
        logbook.record(gen=genStart, evals=len(invalid_ind), **record)
        logger.info("Generation " + str(genStart) + ":\t" +
                    str(logbook.stream) + "\n" +
                    str(logbook.chapters["Fitness"].stream) + "\n" +
                    str(logbook.chapters["Conf"].stream) + "\n" +
                    str(logbook.chapters["Accs"].stream) + "\n" +
                    str(logbook.chapters["RoleCnt"].stream) + "\n" +
                    str(logbook.chapters["URCnt"].stream) + "\n" +
                    str(logbook.chapters["RPCnt"].stream) + "\n" +
                    str(logbook.chapters["Interp"].stream))

    # Begin the evolution
    logger.info("Start evolution...")
    start = datetime.datetime.now()
    logger.info("Start time: " + str(start))
    #hof = tools.HallOfFame(maxsize=1)

    generation = genStart + 1
    stop = False
    logger.info("Start evolution with Generation " + str(genStart))
    while ((not stop) and (generation <= genStart + NGEN)):
        population = toolbox.select(population, k=len(population))
        offspring = algorithms.varAnd(population,
                                      toolbox,
                                      cxpb=CXPB,
                                      mutpb=MUTPB_All)

        # Evaluate individuals, which need a evaluation
        invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
        if (evalFunc == "WSC_Star_RoleDis"):
            fitnesses = [
                toolbox.evaluate(population=offspring, individual=ind)
                for ind in invalid_ind
            ]
        else:
            fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
            # Stop condition
            if (untilSolutionFound):
                array = decoder.resolveRoleModelChromosomeIntoBoolArray(
                    ind[0], Original.shape[0], Original.shape[1])
                conf, accs = matrixOps.compareMatrices(array, Original)
                stop = (conf + accs) == 0

        # Add Fitness values to results
        if generation % freq == 0:
            for ind in offspring:
                results[generation].append(ind.fitness.values)
            # Log statistics for generation
            '''record = stats.compile(offspring)
            logbook.record(gen=generation, evals=len(invalids), **record)
            logger.info("Generation "+str(generation)+":\t"+str(logbook.stream))'''
            record = mstats.compile(offspring)
            logbook.record(gen=generation, evals=len(invalid_ind), **record)
            logger.info("Generation " + str(generation) + ":\t" +
                        str(logbook.stream) + "\t" +
                        str(logbook.chapters["Fitness"].stream) + "\t\t" +
                        str(logbook.chapters["Conf"].stream) + "\t\t" +
                        str(logbook.chapters["Accs"].stream) + "\t\t" +
                        str(logbook.chapters["RoleCnt"].stream) + "\t\t" +
                        str(logbook.chapters["URCnt"].stream) + "\t\t" +
                        str(logbook.chapters["RPCnt"].stream) + "\t\t" +
                        str(logbook.chapters["Interp"].stream))
        if generation % int((genStart + NGEN) / 10) == 0:
            if (printPopulations):
                pop_subdirectory = pop_directory + "\\Generation_" + str(
                    generation)
                #if not os.path.exists(pop_subdirectory):
                #    os.makedirs(pop_subdirectory)
                utils.saveDiversity(generation, population,
                                    pop_subdirectory + "_diversity.json")
                #utils.savePopulation(generation,population,pop_subdirectory+"_population.pkl")
                #visual.showBestResult(offspring, genStart, Original, pop_subdirectory+"\\Individual", "Individual", "Individual from Generation "+str(generation), False, False, True, False)

        population = offspring
        generation += 1

    utils.printDiversity(pop_directory, int((genStart + NGEN) / 10))
    utils.savePopulation(generation, population,
                         pop_subdirectory + "_population.pkl")

    end = datetime.datetime.now()
    timediff = end - start
    time.append(timediff.total_seconds())
    generation -= 1
    # Print final population
    #visual.printpopulation(population)
    logger.info("==> Generation " + str(generation))
    logger.info("DONE.\n")

    # Set Checkpoint
    fileExt = "_S_" + evalFunc + "_" + str(
        len(population)) + "_" + str(generation)
    '''
    if (checkpoint):
        fileExt = "_cont_" + str(len(population)) + "_" + str(generation) + "_" + str(CXPB) + "_" + str(MUTPB_All)
        pickleFile = "Checkpoint"+fileExt+".pkl"
    print("Save checkpoint into "+str(pickleFile))
    cp = dict(population=population,
              generation=generation,
              rndstate=random.getstate(),
              Original=Original,
              results=results,
              time=time,
              populationSize=populationSize,
              CXPB=CXPB,
              prevFiles=prevFiles,
              MUTPB_All=MUTPB_All,
              addRolePB=addRolePB,
              removeRolePB=removeRolePB,
              removeUserPB=removeUserPB,
              removePermissionPB=removePermissionPB,
              addUserPB=addUserPB,
              addPermissionPB=addPermissionPB,
              logbook=logbook)
    pickle.dump(cp, open(pickleFile, "wb"), 2)
    print("DONE.\n")
    '''

    return population, results, generation, time, prevFiles, tools.selBest(
        population, k=numberTopRoleModels), logbook, fileExt