# Loop through each ssp run being considered for ssp_option in range(0, ssp_options_length): ssp = ssp_options[ssp_option] # selecting the ssp scenario # for loop for each cmip6 model for model_i in range(0, n_models): model = cmip6_models[model_i] # seleting the models print(min_temperature, ssp, model) #%% # finding spatial profile for future temperature # time averaged, area averaged historical/present day temperature tas_preindustrial_cube = combine_netCDF_cmip6('/home/rmv203/cmip6_data/tas_Amon_'+model+'_historical*', model) tas_preindustrial_cube = open_netCDF(tas_preindustrial_cube) tas_preindustrial_cube = select_time(tas_preindustrial_cube, 1995, 2005) tas_preindustrial_cube = time_average(tas_preindustrial_cube) tas_preindustrial_cube = area_average(tas_preindustrial_cube, region_global) tas_preindustrial_data = tas_preindustrial_cube.data # time averaged, area averaged historical temperature # cube to find future temperature change tas_cube = combine_netCDF_cmip6('/home/rmv203/cmip6_historical_'+ssp+'/tas_Amon_'+model+'_*', model) tas_cube = open_netCDF(tas_cube) tas_test_cube = annual_average(tas_cube) # defining the time variable for years tas_test_years = tas_test_cube.coord('year').points tas_test_cube = area_average(tas_test_cube, region_global) tas_test_data = tas_test_cube.data
# Loop through each ssp run being considered for ssp_option in range(0, ssp_options_length): ssp = ssp_options[ssp_option] # selecting the ssp scenario # for loop for each CMIP5 model for model_i in range(0, n_models): model = cmip6_models[model_i] # seleting the models print(ssp, model) #%% modelled historical # Soil Carbon (cSoil) cSoil_historical_cube_new = combine_netCDF_cmip6('/home/rmv203/cmip6_data/cSoil_Emon_'+model+'_historical*', model) cSoil_historical_cube_new = open_netCDF(cSoil_historical_cube_new) # Near Surface Air Temperature (tas) tas_historical_cube = combine_netCDF_cmip6('/home/rmv203/cmip6_data/tas_Amon_'+model+'_historical*', model) tas_historical_cube = open_netCDF(tas_historical_cube) # Select historical time period cSoil_historical_cube_new = select_time(cSoil_historical_cube_new, lower_historical, upper_historical) tas_historical_cube = select_time(tas_historical_cube, lower_historical, upper_historical) # Time average cSoil_historical_time_av_cube_new = time_average(cSoil_historical_cube_new) tas_historical_cube = time_average(tas_historical_cube) tas_historical_data = tas_historical_cube.data # Converting from cubes to numpy_arrays cSoil_historical_time_av_data_new = cSoil_historical_time_av_cube_new.data historical_modelled_cSoil_new = cSoil_historical_time_av_data_new.copy()