def main(args): if not os.path.isdir(args.result_dir): os.makedirs(args.result_dir) conv_net = ConvNet(args.outdim, args.depth).to(args.device) if os.path.exists(args.weight_convnet): checkpoint = torch.load(args.weight_convnet) conv_net.load_state_dict(checkpoint['conv_net']) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, args.break_thresh) # load all velcro parameters # model_dir = os.path.dirname(args.model_path) # param_path = os.path.join(model_dir, 'uniform_sample.pkl') param_path = '/home/jc/research/corl2019_learningHaptics/tests/test_xmls/case_{}.pickle'.format( args.case) velcro_params = pickle.load(open(param_path, 'rb')) if args.shuffle: random.shuffle(velcro_params) velcro_util = VelcroUtil(robot, sim_param) state_space = Observation( robot.get_gripper_jpos(), # 6 velcro_util.break_center(), # 6 velcro_util.break_norm()) action_space = ActionSpace(dp=0.06, df=10) performance = { 'time': [], 'success': [], 'num_broken': [], 'tendon_hist': [0, 0, 0, 0, 0] } for n, item in enumerate(velcro_params): geom_type, origin_offset, euler, radius = item print('\n\nTest {} Velcro parameters are: {}, {}, {}, {}'.format( n, geom_type, origin_offset, euler, radius)) change_sim(robot.mj_sim, geom_type, origin_offset, euler, radius) robot.reset_simulation() ret = robot.grasp_handle() broken_so_far = 0 # ax.clear() for t in range(args.max_iter): # take image an predict norm direction # Get image and normalize it img = robot.get_img(args.img_w, args.img_h, 'c1', args.depth) if args.depth: depth = norm_depth(img[1]) img = norm_img(img[0]) img_norm = np.empty((4, args.img_w, args.img_h)) img_norm[:3, :, :] = img img_norm[3, :, :] = depth else: img_norm = norm_img(img) torch_img = torch.from_numpy(img_norm).float().to( args.device).unsqueeze(0) pred = conv_net.forward(torch_img).detach().cpu() fl_norm = pred[0][3:6].numpy() break_dir_norm = pred[0][6:9].numpy() # normalize these vectors fl_norm = fl_norm / la.norm(fl_norm) break_dir_norm = break_dir_norm / la.norm(break_dir_norm) ################ choose action and get action direction vector ################ action_direction = args.act_mag * (-0.5 * fl_norm + 0.5 * break_dir_norm) action_key = (action_vec @ action_direction).argmax() action_direction = action_space.get_action( ACTIONS[action_key])['delta'][:3] gripper_pose = robot.get_gripper_jpos()[:3] # Perform action target_position = np.add(robot.get_gripper_jpos()[:3], action_direction) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, 300, hap_sample=30) # check tendons and slippage done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: broken_so_far = num if done or failure: ratio_broken = float(num) / float(NUM_TENDON) if ratio_broken < 0.2: performance['tendon_hist'][0] += 1 elif ratio_broken >= 0.2 and ratio_broken < 0.4: performance['tendon_hist'][1] += 1 elif ratio_broken >= 0.4 and ratio_broken < 0.6: performance['tendon_hist'][2] += 1 elif ratio_broken >= 0.6 and ratio_broken < 0.8: performance['tendon_hist'][3] += 1 else: performance['tendon_hist'][4] += 1 performance['num_broken'].append(num) if done: performance['success'].append(1) performance['time'].append(t + 1) if failure: performance['success'].append(0) performance['time'].append(t + 1) break if t == args.max_iter - 1: ################## exceed max iterations #################### performance['success'].append(0) performance['time'].append(args.max_iter) ratio_broken = float(num) / float(NUM_TENDON) performance['num_broken'].append(num) if ratio_broken < 0.2: performance['tendon_hist'][0] += 1 elif ratio_broken >= 0.2 and ratio_broken < 0.4: performance['tendon_hist'][1] += 1 elif ratio_broken >= 0.4 and ratio_broken < 0.6: performance['tendon_hist'][2] += 1 elif ratio_broken >= 0.6 and ratio_broken < 0.8: performance['tendon_hist'][3] += 1 else: performance['tendon_hist'][4] += 1 # print episode performance print('Success: {}, time: {}, num_broken: {} '.format( performance['success'][-1], performance['time'][-1], performance['num_broken'][-1])) print('Finished opening velcro with haptics test \n') success = np.array(performance['success']) time = np.array(performance['time']) print('Successfully opened the velcro in: {}% of cases'.format( 100 * np.sum(success) / len(performance['success']))) print('Average time to open: {}'.format(np.average(time[success > 0]))) out_fname = 'vision_case{}.txt'.format(args.case) with open(os.path.join(args.result_dir, out_fname), 'w+') as f: f.write('Time: {}\n'.format(performance['time'])) f.write('Success: {}\n'.format(performance['success'])) f.write('Successfully opened the velcro in: {}% of cases\n'.format( 100 * np.sum(success) / len(performance['success']))) f.write('Average time to open: {}\n'.format( np.average(time[success > 0]))) f.write('Num_broken: {}\n'.format(performance['num_broken'])) f.write('Tendon histogram: {}\n'.format(performance['tendon_hist'])) f.close()
def train_POMDP(self): args = self.args # Create the output directory if it does not exist if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) # Create our policy net and a target net self.policy_net_1 = DRQN(args.indim, args.outdim).to(args.device) self.policy_net_2 = DRQN(args.indim, args.outdim).to(args.device) self.conv_net_1 = ConvNet(args.ftdim, args.depth).to(args.device) self.conv_net_2 = ConvNet(args.ftdim, args.depth).to(args.device) # Set up the optimizer self.policy_optimizer_1 = optim.RMSprop(self.policy_net_1.parameters(), lr=args.lr) self.policy_optimizer_2 = optim.RMSprop(self.policy_net_2.parameters(), lr=args.lr) self.conv_optimizer_1 = optim.RMSprop(self.conv_net_1.parameters(), lr=1e-5) self.conv_optimizer_2 = optim.RMSprop(self.conv_net_2.parameters(), lr=1e-5) self.memory = RecurrentMemory(70) self.steps_done = 0 # Setup the state normalizer normalizer = Multimodal_Normalizer(num_inputs=args.indim - args.ftdim, device=args.device) print_variables = {'durations': [], 'rewards': [], 'loss': []} start_episode = 0 if args.checkpoint_file: if os.path.exists(args.checkpoint_file): checkpoint = torch.load(args.checkpoint_file) self.policy_net_1.load_state_dict(checkpoint['policy_net_1']) self.policy_net_2.load_state_dict(checkpoint['policy_net_2']) self.conv_net_1.load_state_dict(checkpoint['conv_net_1']) self.conv_net_2.load_state_dict(checkpoint['conv_net_2']) self.policy_optimizer_1.load_state_dict( checkpoint['policy_optimizer_1']) self.policy_optimizer_2.load_state_dict( checkpoint['policy_optimizer_2']) self.conv_optimizer_1.load_state_dict( checkpoint['conv_optimizer_1']) self.conv_optimizer_2.load_state_dict( checkpoint['conv_optimizer_2']) start_episode = checkpoint['epoch'] self.steps_done = checkpoint['steps_done'] with open( os.path.join(os.path.dirname(args.checkpoint_file), 'results_pomdp.pkl'), 'rb') as file: plot_dict = pickle.load(file) print_variables['durations'] = plot_dict['durations'] print_variables['rewards'] = plot_dict['rewards'] if args.normalizer_file: if os.path.exists(args.normalizer_file): normalizer.restore_state(args.normalizer_file) if args.memory: if os.path.exists(args.memory): self.memory.load(args.memory) if args.weight_conv: checkpoint = torch.load(args.weight_conv) self.conv_net_1.load_state_dict(checkpoint['conv_net']) self.conv_optimizer_1.load_state_dict(checkpoint['conv_optimizer']) self.conv_net_2.load_state_dict(checkpoint['conv_net']) self.conv_optimizer_2.load_state_dict(checkpoint['conv_optimizer']) action_space = ActionSpace(dp=0.06, df=10) # Create robot, reset simulation and grasp handle model = load_model_from_path(args.model_path) sim = MjSim(model) sim_param = SimParameter(sim) sim.step() if args.render: viewer = MjViewer(sim) else: viewer = None robot = RobotSim(sim, viewer, sim_param, args.render, self.break_threshold) tactile_obs_space = TactileObs( robot.get_gripper_jpos(), # 6 robot.get_all_touch_buffer(args.hap_sample)) # 30 x 12 # Main training loop for ii in range(start_episode, args.epochs): start_time = time.time() act_sequence = [] velcro_params = init_model(robot.mj_sim) robot.reset_simulation() ret = robot.grasp_handle() if not ret: continue # Local memory for current episode localMemory = [] # Get current observation hidden_state_1, cell_state_1 = self.policy_net_1.init_hidden_states( batch_size=1, device=args.device) hidden_state_2, cell_state_2 = self.policy_net_2.init_hidden_states( batch_size=1, device=args.device) broken_so_far = 0 for t in count(): if not args.quiet and t % 50 == 0: print("Running training episode: {}, iteration: {}".format( ii, t)) # Select action tactile_obs = tactile_obs_space.get_state() normalizer.observe(tactile_obs) tactile_obs = normalizer.normalize(tactile_obs) # Get image and normalize it img = robot.get_img(args.img_w, args.img_h, 'c1', args.depth) if args.depth: depth = norm_depth(img[1]) img = norm_img(img[0]) img_norm = np.empty((4, args.img_w, args.img_h)) img_norm[:3, :, :] = img img_norm[3, :, :] = depth else: img_norm = norm_img(img) observation = [tactile_obs, img_norm] action, hidden_state_1, cell_state_1 = self.select_action( observation, hidden_state_1, cell_state_1) # record actions in this epoch act_sequence.append(action) # Perform action delta = action_space.get_action( self.ACTIONS[action])['delta'][:3] target_position = np.add(robot.get_gripper_jpos()[:3], np.array(delta)) target_pose = np.hstack( (target_position, robot.get_gripper_jpos()[3:])) robot.move_joint(target_pose, True, self.gripping_force, hap_sample=args.hap_sample) # Get reward done, num = robot.update_tendons() failure = robot.check_slippage() if num > broken_so_far: reward = num - broken_so_far broken_so_far = num else: reward = 0 # Observe new state tactile_obs_space.update( robot.get_gripper_jpos(), # 6 robot.get_all_touch_buffer(args.hap_sample)) # 30x12 # Set max number of iterations if t >= self.max_iter: done = True # Check if done if not done and not failure: next_tactile_obs = tactile_obs_space.get_state() normalizer.observe(next_tactile_obs) next_tactile_obs = normalizer.normalize(next_tactile_obs) # Get image and normalize it next_img = robot.get_img(args.img_w, args.img_h, 'c1', args.depth) if args.depth: next_depth = norm_depth(next_img[1]) next_img = norm_img(next_img[0]) next_img_norm = np.empty((4, args.img_w, args.img_h)) next_img_norm[:3, :, :] = next_img next_img_norm[3, :, :] = next_depth else: next_img_norm = norm_img(next_img) next_state = [next_tactile_obs, next_img_norm] else: next_state = None # Push new Transition into memory localMemory.append( Transition(observation, action, next_state, reward)) # Optimize the model if self.steps_done % 10 == 0: self.optimize() # If we are done, reset the model if done or failure: self.memory.push(localMemory) if failure: print_variables['durations'].append(self.max_iter) else: print_variables['durations'].append(t) print_variables['rewards'].append(broken_so_far) plot_variables(self.figure, print_variables, "Training POMDP") print("Model parameters: {}".format(velcro_params)) print("Actions in this epoch are: {}".format(act_sequence)) print("Epoch {} took {}s, total number broken: {}\n\n". format(ii, time.time() - start_time, broken_so_far)) break # Save checkpoints every vew iterations if ii % args.save_freq == 0: save_path = os.path.join( args.output_dir, 'checkpoint_model_' + str(ii) + '.pth') torch.save( { 'epochs': ii, 'steps_done': self.steps_done, 'conv_net_1': self.conv_net_1.state_dict(), 'conv_net_2': self.conv_net_2.state_dict(), 'policy_net_1': self.policy_net_1.state_dict(), 'policy_net_2': self.policy_net_2.state_dict(), 'conv_optimizer_1': self.conv_optimizer_1.state_dict(), 'conv_optimizer_2': self.conv_optimizer_2.state_dict(), 'policy_optimizer_1': self.policy_optimizer_1.state_dict(), 'policy_optimizer_2': self.policy_optimizer_2.state_dict(), }, save_path) # Save normalizer state for inference normalizer.save_state( os.path.join(args.output_dir, 'normalizer_state.pickle')) self.memory.save_memory(os.path.join(args.output_dir, 'memory.pickle')) if args.savefig_path: now = dt.datetime.now() self.figure[0].savefig( args.savefig_path + '{}_{}_{}.png'.format(now.month, now.day, now.hour), format='png') print('Training done') plt.show() return print_variables