class BiasRobot: def __init__(self, top_k=3): """ `top_k` refers to 'top-k recall'. top-1 recall will return the single most relevant sentence in the document, and top-3 recall the 3 most relevant. The validation study assessed the accuracy of top-3 and top-1 and we suggest top-3 as default """ self.sent_clf = MiniClassifier(robotreviewer.get_data('bias/bias_sent_level.npz')) self.doc_clf = MiniClassifier(robotreviewer.get_data('bias/bias_doc_level.npz')) self.vec = ModularVectorizer(norm=None, non_negative=True, binary=True, ngram_range=(1, 2), n_features=2**26) self.bias_domains = ['Random sequence generation', 'Allocation concealment', 'Blinding of participants and personnel', 'Blinding of outcome assessment', 'Incomplete outcome data', 'Selective reporting'] self.top_k = top_k def pdf_annotate(self, data, top_k=None): """ Annotate full text of clinical trial report `top_k` can be overridden here, else defaults to the class default set in __init__ """ if top_k is None: top_k = self.top_k doc_text = data.get('parsed_text') if not doc_text: # we've got to know the text at least.. return data doc_len = len(data['text']) marginalia = [] doc_sents = [sent.text for sent in doc_text.sents] doc_sent_start_i = [sent.start_char for sent in doc_text.sents] doc_sent_end_i = [sent.end_char for sent in doc_text.sents] structured_data = [] for domain in self.bias_domains: doc_domains = [domain] * len(doc_sents) doc_X_i = zip(doc_sents, doc_domains) # # build up sentence feature set # self.vec.builder_clear() # uni-bigrams self.vec.builder_add_docs(doc_sents) # uni-bigrams/domain interactions self.vec.builder_add_docs(doc_X_i) doc_sents_X = self.vec.builder_transform() doc_sents_preds = self.sent_clf.decision_function(doc_sents_X) high_prob_sent_indices = np.argsort(doc_sents_preds)[:-top_k-1:-1] # top k, with no 1 first high_prob_sents = [doc_sents[i] for i in high_prob_sent_indices] high_prob_start_i = [doc_sent_start_i[i] for i in high_prob_sent_indices] high_prob_end_i = [doc_sent_end_i[i] for i in high_prob_sent_indices] high_prob_prefixes = [doc_text.text[max(0, offset-20):offset] for offset in high_prob_start_i] high_prob_suffixes = [doc_text.text[offset: min(doc_len, offset+20)] for offset in high_prob_end_i] high_prob_sents_j = " ".join(high_prob_sents) sent_domain_interaction = "-s-" + domain # # build up document feature set # self.vec.builder_clear() # uni-bigrams self.vec.builder_add_docs([doc_text.text]) # uni-bigrams/domain interaction self.vec.builder_add_docs([(doc_text.text, domain)]) # uni-bigrams/relevance interaction self.vec.builder_add_docs([(high_prob_sents_j, sent_domain_interaction)]) X = self.vec.builder_transform() bias_pred = self.doc_clf.predict(X) bias_class = ["high/unclear", "low"][bias_pred[0]] annotation_metadata = [{"content": sent[0], "position": sent[1], "uuid": str(uuid.uuid1()), "prefix": sent[2], "suffix": sent[3]} for sent in zip(high_prob_sents, high_prob_start_i, high_prob_prefixes, high_prob_suffixes)] structured_data.append({ "domain": domain, "judgement": bias_class, "annotations": annotation_metadata}) data.ml["bias"] = structured_data return data @staticmethod def get_marginalia(data): """ Get marginalia formatted for Spa from structured data """ marginalia = [] for row in data['bias']: marginalia.append({ "type": "Risk of Bias", "title": row['domain'], "annotations": row['annotations'], "description": "**Overall risk of bias prediction**: {}".format(row['judgement']) }) return marginalia @staticmethod def get_domains(): return [u'Random sequence generation', u'Allocation concealment', u'Blinding of participants and personnel', u'Blinding of outcome assessment', u'Incomplete outcome data', u'Selective reporting']
class BiasAbRobot: def __init__(self, top_k=3): """ `top_k` refers to 'top-k recall'. top-1 recall will return the single most relevant sentence in the document, and top-3 recall the 3 most relevant. The validation study assessed the accuracy of top-3 and top-1 and we suggest top-3 as default """ self.doc_clf = MiniClassifier( robotreviewer.get_data(os.path.join('bias_ab', 'bias_ab.npz'))) self.vec = ModularVectorizer(norm=None, non_negative=True, binary=True, ngram_range=(1, 2)) self.bias_domains = [ 'random_sequence_generation', 'allocation_concealment', 'blinding_participants_personnel' ] self.top_k = top_k def api_annotate(self, articles, top_k=None): """ Annotate full text of clinical trial report `top_k` can be overridden here, else defaults to the class default set in __init__ """ if not all( ('ab' in article) and ('ti' in article) for article in articles): raise Exception( 'Abstract bias model requires titles and abstracts to be able to complete annotation' ) if top_k is None: top_k = self.top_k out = [] for article in articles: doc_text = article['ti'] + " " + article['ab'] row = {} for domain in self.bias_domains: # # build up document feature set # self.vec.builder_clear() # uni-bigrams self.vec.builder_add_docs([doc_text]) # uni-bigrams/domain interaction self.vec.builder_add_docs([(doc_text, domain)]) x = self.vec.builder_transform() bias_pred = self.doc_clf.predict(x) bias_class = ["high/unclear", "low"][bias_pred[0]] row[domain] = {"judgement": bias_class} out.append(row) return out