def detection(model, config):
    # Tracker
    if config.USE_TRACKER:
        import sys
        sys.path.append(os.getcwd() + '/stuff/kcf')
        import KCF
        tracker = KCF.kcftracker(False, True, False, False)
        tracker_counter = 0
        track = False

    print("> Building Graph")
    # tf Session Config
    tf_config = model.tf_config
    detection_graph = model.detection_graph
    category_index = model.category_index
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph, config=tf_config) as sess:
            # start Videostream
            vs = WebcamVideoStream(config.VIDEO_INPUT, config.WIDTH,
                                   config.HEIGHT).start()
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict([
                'num_detections', 'detection_boxes', 'detection_scores',
                'detection_classes', 'detection_masks'
            ])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations
            if 'detection_masks' in tensor_dict:
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'],
                                             [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'],
                                             [0])
                real_num_detection = tf.cast(tensor_dict['num_detections'][0],
                                             tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0],
                                           [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0],
                                           [real_num_detection, -1, -1])
                detection_masks_reframed = reframe_box_masks_to_image_masks(
                    detection_masks, detection_boxes, vs.real_height,
                    vs.real_width)
                detection_masks_reframed = tf.cast(
                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(
                    detection_masks_reframed, 0)
            if config.SPLIT_MODEL:
                score_out = detection_graph.get_tensor_by_name(
                    'Postprocessor/convert_scores:0')
                expand_out = detection_graph.get_tensor_by_name(
                    'Postprocessor/ExpandDims_1:0')
                score_in = detection_graph.get_tensor_by_name(
                    'Postprocessor/convert_scores_1:0')
                expand_in = detection_graph.get_tensor_by_name(
                    'Postprocessor/ExpandDims_1_1:0')
                # Threading
                score = model.score
                expand = model.expand
                gpu_worker = SessionWorker("GPU", detection_graph, tf_config)
                cpu_worker = SessionWorker("CPU", detection_graph, tf_config)
                gpu_opts = [score_out, expand_out]
                cpu_opts = [
                    tensor_dict['detection_boxes'],
                    tensor_dict['detection_scores'],
                    tensor_dict['detection_classes'],
                    tensor_dict['num_detections']
                ]

            fps = FPS(config.FPS_INTERVAL).start()
            masks = None
            print('> Starting Detection')
            while vs.isActive():
                # Detection
                if not (config.USE_TRACKER and track):
                    if config.SPLIT_MODEL:
                        # split model in seperate gpu and cpu session threads
                        if gpu_worker.is_sess_empty():
                            # read video frame, expand dimensions and convert to rgb
                            frame = vs.read()
                            # put new queue
                            gpu_feeds = {image_tensor: vs.expanded()}
                            if config.VISUALIZE:
                                gpu_extras = frame  # for visualization frame
                            else:
                                gpu_extras = None
                            gpu_worker.put_sess_queue(gpu_opts, gpu_feeds,
                                                      gpu_extras)
                        g = gpu_worker.get_result_queue()
                        if g is None:
                            # gpu thread has no output queue. ok skip, let's check cpu thread.
                            pass
                        else:
                            # gpu thread has output queue.
                            score, expand, frame = g["results"][0], g[
                                "results"][1], g["extras"]

                            if cpu_worker.is_sess_empty():
                                # When cpu thread has no next queue, put new queue.
                                # else, drop gpu queue.
                                cpu_feeds = {
                                    score_in: score,
                                    expand_in: expand
                                }
                                cpu_extras = frame
                                cpu_worker.put_sess_queue(
                                    cpu_opts, cpu_feeds, cpu_extras)
                        c = cpu_worker.get_result_queue()
                        if c is None:
                            # cpu thread has no output queue. ok, nothing to do. continue
                            continue  # If CPU RESULT has not been set yet, no fps update
                        else:
                            boxes, scores, classes, num, frame = c["results"][
                                0], c["results"][1], c["results"][2], c[
                                    "results"][3], c["extras"]
                    else:
                        # default session
                        frame = vs.read()
                        output_dict = sess.run(
                            tensor_dict,
                            feed_dict={image_tensor: vs.expanded()})
                        num = output_dict['num_detections'][0]
                        classes = output_dict['detection_classes'][0]
                        boxes = output_dict['detection_boxes'][0]
                        scores = output_dict['detection_scores'][0]
                        if 'detection_masks' in output_dict:
                            masks = output_dict['detection_masks'][0]

                    # reformat detection
                    num = int(num)
                    boxes = np.squeeze(boxes)
                    classes = np.squeeze(classes).astype(np.uint8)
                    scores = np.squeeze(scores)

                    # Visualization
                    vis = visualize_objectdetection(
                        frame, boxes, classes, scores, masks,
                        category_index, fps._glob_numFrames, config.MAX_FRAMES,
                        fps.fps_local(), config.PRINT_INTERVAL,
                        config.PRINT_TH,
                        config.OD_MODEL_NAME + config._DEV + config._OPT,
                        config.VISUALIZE)
                    if not vis:
                        break

                    # Activate Tracker
                    if config.USE_TRACKER and num <= config.NUM_TRACKERS:
                        tracker_frame = frame
                        track = True
                        first_track = True

                # Tracking
                else:
                    frame = vs.read()
                    if first_track:
                        trackers = []
                        tracker_boxes = boxes
                        for box in boxes[~np.all(boxes == 0, axis=1)]:
                            tracker.init(
                                conv_detect2track(box, vs.real_width,
                                                  vs.real_height),
                                tracker_frame)
                            trackers.append(tracker)
                        first_track = False

                    for idx, tracker in enumerate(trackers):
                        tracker_box = tracker.update(frame)
                        tracker_boxes[idx, :] = conv_track2detect(
                            tracker_box, vs.real_width, vs.real_height)
                    vis = visualize_objectdetection(
                        frame, tracker_boxes, classes, scores, masks,
                        category_index, fps._glob_numFrames, config.MAX_FRAMES,
                        fps.fps_local(), config.PRINT_INTERVAL,
                        config.PRINT_TH,
                        config.OD_MODEL_NAME + config._DEV + config._OPT,
                        config.VISUALIZE)
                    if not vis:
                        break

                    tracker_counter += 1
                    #tracker_frame = frame
                    if tracker_counter >= config.TRACKER_FRAMES:
                        track = False
                        tracker_counter = 0

                fps.update()

    # End everything
    vs.stop()
    fps.stop()
    if config.SPLIT_MODEL:
        gpu_worker.stop()
        cpu_worker.stop()
def detection(model,config):
    # Tf Session
    tf_config = model.tf_config
    detection_graph = model.detection_graph
    category_index = model.category_index
    print("> Building Graph")
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph,config=tf_config) as sess:
            # start Videostream
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks'])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations
            if 'detection_masks' in tensor_dict:
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
                detection_masks_reframed = reframe_box_masks_to_image_masks(
                        detection_masks, detection_boxes, config.HEIGHT, config.WIDTH)
                detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)
            if config.SPLIT_MODEL:
                score_out = detection_graph.get_tensor_by_name('Postprocessor/convert_scores:0')
                expand_out = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1:0')
                score_in = detection_graph.get_tensor_by_name('Postprocessor/convert_scores_1:0')
                expand_in = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1_1:0')
                # Threading
                score = model.score
                expand = model.expand

            # Timeliner
            if config.WRITE_TIMELINE:
                options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                timeliner = TimeLiner()
            else:
                options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
                run_metadata = False

            images = load_images(config.IMAGE_PATH,config.LIMIT_IMAGES)
            timer = Timer().start()
            print('> Starting Detection')
            for image in images:
                if config.SPLIT_MODEL:
                    # split model in seperate gpu and cpu session threads
                    masks = None # No Mask Detection possible yet
                    frame = cv2.resize(cv2.imread(image),(config.WIDTH,config.HEIGHT))
                    frame_expanded = np.expand_dims(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), axis=0)
                    timer.tic()
                    # GPU Session
                    score, expand = sess.run([score_out, expand_out],
                            feed_dict={image_tensor: frame_expanded},
                            options=options, run_metadata=run_metadata)
                    timer.tictic()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(run_metadata.step_stats,
                                                '{}/timeline_{}_SM1.json'.format(
                                                config.RESULT_PATH,config.OD_DISPLAY_NAME))
                    timer.tic()
                    # CPU Session
                    boxes, scores, classes, num = sess.run(
                            [tensor_dict['detection_boxes'], tensor_dict['detection_scores'], tensor_dict['detection_classes'], tensor_dict['num_detections']],
                            feed_dict={score_in:score, expand_in: expand},
                            options=options, run_metadata=run_metadata)
                    timer.toc()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(run_metadata.step_stats,
                                                '{}/timeline_{}_SM2.json'.format(
                                                config.RESULT_PATH,config.OD_DISPLAY_NAME))
                else:
                    # default session
                    frame = cv2.resize(cv2.imread(image),(config.WIDTH,config.HEIGHT))
                    frame_expanded = np.expand_dims(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), axis=0)
                    timer.tic()
                    output_dict = sess.run(tensor_dict,
                            feed_dict={image_tensor: frame_expanded},
                            options=options, run_metadata=run_metadata)
                    timer.toc()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(run_metadata.step_stats,
                                                '{}/timeline_{}.json'.format(
                                                config.RESULT_PATH,config.OD_DISPLAY_NAME))
                    num = output_dict['num_detections'][0]
                    classes = output_dict['detection_classes'][0]
                    boxes = output_dict['detection_boxes'][0]
                    scores = output_dict['detection_scores'][0]
                    if 'detection_masks' in output_dict:
                        masks = output_dict['detection_masks'][0]
                    else:
                        masks = None

                # reformat detection
                num = int(num)
                boxes = np.squeeze(boxes)
                classes = np.squeeze(classes).astype(np.uint8)
                scores = np.squeeze(scores)

                # Visualization
                vis = visualize_objectdetection(frame,boxes,classes,scores,masks,category_index,timer.get_frame(),
                                                config.MAX_FRAMES,timer.get_fps(),config.PRINT_INTERVAL,config.PRINT_TH,
                                                config.OD_DISPLAY_NAME,config.VISUALIZE,config.VIS_FPS,config.DISCO_MOE,config.ALPHA)
                if not vis:
                    break
                if config.SAVE_RESULT:
                    cv2.imwrite('{}/{}_{}.jpg'.format(config.RESULT_PATH,timer.get_frame(),config.OD_DISPLAY_NAME),frame)

    cv2.destroyAllWindows()
    timer.stop()
示例#3
0
def detection(model, config):
    # Tf Session
    tf_config = model.tf_config
    detection_graph = model.detection_graph
    category_index = model.category_index
    print("> Building Graph")
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph, config=tf_config) as sess:
            # start Videostream
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict([
                'num_detections', 'detection_boxes', 'detection_scores',
                'detection_classes', 'detection_masks'
            ])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations
            if 'detection_masks' in tensor_dict:
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'],
                                             [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'],
                                             [0])
                real_num_detection = tf.cast(tensor_dict['num_detections'][0],
                                             tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0],
                                           [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0],
                                           [real_num_detection, -1, -1])
                detection_masks_reframed = reframe_box_masks_to_image_masks(
                    detection_masks, detection_boxes, config.HEIGHT,
                    config.WIDTH)
                detection_masks_reframed = tf.cast(
                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(
                    detection_masks_reframed, 0)
            if config.SPLIT_MODEL:
                score_out = detection_graph.get_tensor_by_name(
                    'Postprocessor/convert_scores:0')
                expand_out = detection_graph.get_tensor_by_name(
                    'Postprocessor/ExpandDims_1:0')
                score_in = detection_graph.get_tensor_by_name(
                    'Postprocessor/convert_scores_1:0')
                expand_in = detection_graph.get_tensor_by_name(
                    'Postprocessor/ExpandDims_1_1:0')
                # Threading
                score = model.score
                expand = model.expand

            # Timeliner
            if config.WRITE_TIMELINE:
                options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                timeliner = TimeLiner()
            else:
                options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
                run_metadata = False

            images = load_images(config.IMAGE_PATH, config.LIMIT_IMAGES)
            timer = Timer().start()
            print('> Starting Detection')
            for image in images:
                if config.SPLIT_MODEL:
                    # split model in seperate gpu and cpu session threads
                    masks = None  # No Mask Detection possible yet
                    frame = cv2.resize(cv2.imread(image),
                                       (config.WIDTH, config.HEIGHT))
                    frame_expanded = np.expand_dims(cv2.cvtColor(
                        frame, cv2.COLOR_BGR2RGB),
                                                    axis=0)
                    timer.tic()
                    # GPU Session
                    score, expand = sess.run(
                        [score_out, expand_out],
                        feed_dict={image_tensor: frame_expanded},
                        options=options,
                        run_metadata=run_metadata)
                    timer.tictic()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(
                            run_metadata.step_stats,
                            'test_results/timeline_{}{}{}{}.json'.format(
                                config.OD_MODEL_NAME, '_SM1', config._DEV,
                                config._OPT))
                    timer.tic()
                    # CPU Session
                    boxes, scores, classes, num = sess.run(
                        [
                            tensor_dict['detection_boxes'],
                            tensor_dict['detection_scores'],
                            tensor_dict['detection_classes'],
                            tensor_dict['num_detections']
                        ],
                        feed_dict={
                            score_in: score,
                            expand_in: expand
                        },
                        options=options,
                        run_metadata=run_metadata)
                    timer.toc()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(
                            run_metadata.step_stats,
                            'test_results/timeline_{}{}{}{}.json'.format(
                                config.OD_MODEL_NAME, '_SM2', config._DEV,
                                config._OPT))
                else:
                    # default session
                    frame = cv2.resize(cv2.imread(image),
                                       (config.WIDTH, config.HEIGHT))
                    frame_expanded = np.expand_dims(cv2.cvtColor(
                        frame, cv2.COLOR_BGR2RGB),
                                                    axis=0)
                    timer.tic()
                    output_dict = sess.run(
                        tensor_dict,
                        feed_dict={image_tensor: frame_expanded},
                        options=options,
                        run_metadata=run_metadata)
                    timer.toc()
                    if config.WRITE_TIMELINE:
                        timeliner.write_timeline(
                            run_metadata.step_stats,
                            'test_results/timeline_{}{}{}.json'.format(
                                config.OD_MODEL_NAME, config._DEV,
                                config._OPT))
                    num = output_dict['num_detections'][0]
                    classes = output_dict['detection_classes'][0]
                    boxes = output_dict['detection_boxes'][0]
                    scores = output_dict['detection_scores'][0]
                    if 'detection_masks' in output_dict:
                        masks = output_dict['detection_masks'][0]
                    else:
                        masks = None

                # reformat detection
                num = int(num)
                boxes = np.squeeze(boxes)
                classes = np.squeeze(classes).astype(np.uint8)
                scores = np.squeeze(scores)

                # Visualization
                vis = visualize_objectdetection(
                    frame, boxes, classes, scores, masks, category_index,
                    timer.get_frame(), config.MAX_FRAMES, timer.get_fps(),
                    config.PRINT_INTERVAL, config.PRINT_TH,
                    config.OD_MODEL_NAME + config._DEV + config._OPT,
                    config.VISUALIZE)
                if not vis:
                    break

    cv2.destroyAllWindows()
    timer.stop()
def detection(model,config):
    # Tracker
    if config.USE_TRACKER:
        import sys
        sys.path.append(os.getcwd()+'/rod/kcf')
        import KCF
        tracker = KCF.kcftracker(False, True, False, False)
        tracker_counter = 0
        track = False

    print("> Building Graph")
    # tf Session Config
    tf_config = model.tf_config
    detection_graph = model.detection_graph
    category_index = model.category_index
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph,config=tf_config) as sess:
            # start Videostream
            vs = WebcamVideoStream(config.VIDEO_INPUT,config.WIDTH,config.HEIGHT).start()
            # Define Input and Ouput tensors
            tensor_dict = model.get_tensordict(['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks'])
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Mask Transformations
            if 'detection_masks' in tensor_dict:
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
                detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
                real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
                detection_masks_reframed = reframe_box_masks_to_image_masks(
                                            detection_masks, detection_boxes, vs.real_height, vs.real_width)
                detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)
            if config.SPLIT_MODEL:
                score_out = detection_graph.get_tensor_by_name('Postprocessor/convert_scores:0')
                expand_out = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1:0')
                score_in = detection_graph.get_tensor_by_name('Postprocessor/convert_scores_1:0')
                expand_in = detection_graph.get_tensor_by_name('Postprocessor/ExpandDims_1_1:0')
                # Threading
                score = model.score
                expand = model.expand
                gpu_worker = SessionWorker("GPU",detection_graph,tf_config)
                cpu_worker = SessionWorker("CPU",detection_graph,tf_config)
                gpu_opts = [score_out, expand_out]
                cpu_opts = [tensor_dict['detection_boxes'], tensor_dict['detection_scores'], tensor_dict['detection_classes'], tensor_dict['num_detections']]

            fps = FPS(config.FPS_INTERVAL).start()
            masks = None
            print('> Starting Detection')
            while vs.isActive():
                # Detection
                if not (config.USE_TRACKER and track):
                    if config.SPLIT_MODEL:
                        # split model in seperate gpu and cpu session threads
                        if gpu_worker.is_sess_empty():
                            # read video frame, expand dimensions and convert to rgb
                            frame = vs.read()
                            # put new queue
                            gpu_feeds = {image_tensor: vs.expanded()}
                            if config.VISUALIZE:
                                gpu_extras = frame # for visualization frame
                            else:
                                gpu_extras = None
                            gpu_worker.put_sess_queue(gpu_opts,gpu_feeds,gpu_extras)
                        g = gpu_worker.get_result_queue()
                        if g is None:
                            # gpu thread has no output queue. ok skip, let's check cpu thread.
                            pass
                        else:
                            # gpu thread has output queue.
                            score,expand,frame = g["results"][0],g["results"][1],g["extras"]

                            if cpu_worker.is_sess_empty():
                                # When cpu thread has no next queue, put new queue.
                                # else, drop gpu queue.
                                cpu_feeds = {score_in: score, expand_in: expand}
                                cpu_extras = frame
                                cpu_worker.put_sess_queue(cpu_opts,cpu_feeds,cpu_extras)
                        c = cpu_worker.get_result_queue()
                        if c is None:
                            # cpu thread has no output queue. ok, nothing to do. continue
                            continue # If CPU RESULT has not been set yet, no fps update
                        else:
                            boxes, scores, classes, num, frame = c["results"][0],c["results"][1],c["results"][2],c["results"][3],c["extras"]
                    else:
                        # default session
                        frame = vs.read()
                        output_dict = sess.run(tensor_dict, feed_dict={image_tensor: vs.expanded()})
                        num = output_dict['num_detections'][0]
                        classes = output_dict['detection_classes'][0]
                        boxes = output_dict['detection_boxes'][0]
                        scores = output_dict['detection_scores'][0]
                        if 'detection_masks' in output_dict:
                            masks = output_dict['detection_masks'][0]

                    # reformat detection
                    num = int(num)
                    boxes = np.squeeze(boxes)
                    classes = np.squeeze(classes).astype(np.uint8)
                    scores = np.squeeze(scores)

                    # Visualization
                    vis = visualize_objectdetection(frame,boxes,classes,scores,masks,category_index,fps._glob_numFrames,
                                                    config.MAX_FRAMES,fps.fps_local(),config.PRINT_INTERVAL,config.PRINT_TH,
                                                    config.OD_DISPLAY_NAME,config.VISUALIZE,config.VIS_FPS,config.DISCO_MODE,config.ALPHA)
                    if not vis:
                        break

                    # Activate Tracker
                    if config.USE_TRACKER and num <= config.NUM_TRACKERS:
                        tracker_frame = frame
                        track = True
                        first_track = True

                # Tracking
                else:
                    frame = vs.read()
                    if first_track:
                        trackers = []
                        tracker_boxes = boxes
                        for box in boxes[~np.all(boxes == 0, axis=1)]:
                                tracker.init(conv_detect2track(box,vs.real_width, vs.real_height), tracker_frame)
                                trackers.append(tracker)
                        first_track = False

                    for idx,tracker in enumerate(trackers):
                        tracker_box = tracker.update(frame)
                        tracker_boxes[idx,:] = conv_track2detect(tracker_box, vs.real_width, vs.real_height)
                    vis = visualize_objectdetection(frame,tracker_boxes,classes,scores,masks,category_index,fps._glob_numFrames,
                                                    config.MAX_FRAMES,fps.fps_local(),config.PRINT_INTERVAL,config.PRINT_TH,
                                                    config.OD_DISPLAY_NAME,config.VISUALIZE,config.VIS_FPS,config.DISCO_MODE,config.ALPHA)
                    if not vis:
                        break

                    tracker_counter += 1
                    #tracker_frame = frame
                    if tracker_counter >= config.TRACKER_FRAMES:
                        track = False
                        tracker_counter = 0

                fps.update()

    # End everything
    vs.stop()
    fps.stop()
    if config.SPLIT_MODEL:
        gpu_worker.stop()
        cpu_worker.stop()