示例#1
0
    def echoes_callback(echo):
        echo['data'] = echo['data'][np.bitwise_and(
            echo['data']['flags'],
            0x01).astype(np.bool)]  #keep valid echoes only
        indices, flags, distances, amplitudes, x, y, z = [
            echo['data'][x] for x in
            ['indices', 'flags', 'distances', 'amplitudes', 'x', 'y', 'z']
        ]
        stamp = rospy.Time.now()
        #rospy.loginfo('pixell: echoes callback')
        exportation_echoes.add_sample(echo)
        if pub_raw.get_num_connections() > 0:
            pub_raw.publish(
                ros_numpy.msgify(PointCloud2, echo['data'], stamp, frame_id))

        if pub_cloud.get_num_connections() > 0:
            struct_cloud = np.empty(indices.size,
                                    dtype=[('x', np.float32),
                                           ('y', np.float32),
                                           ('z', np.float32),
                                           ('intensity', np.float32)])

            struct_cloud['x'] = x
            struct_cloud['y'] = y
            struct_cloud['z'] = z

            struct_cloud['intensity'] = amplitudes
            pub_cloud.publish(
                ros_numpy.msgify(PointCloud2, struct_cloud, stamp, frame_id))
示例#2
0
 def offset_goal(pose, offset):
     position = numpify(pose.pose.position)
     orientation = numpify(pose.pose.orientation)
     position += qv_mult(orientation, np.array([offset, 0.0, 0.0]))
     pose.pose.position = msgify(Point, position)
     pose.pose.orientation = msgify(Quaternion, orientation)
     return pose
示例#3
0
    def sub_image(self, im_msg, image_info):
        """
        Take a thresholded image and output marker position metrics.
        """
        print("sub_image in marker_locator")
        # Announce that we have received a packet
        self.pub_packet_entered_node.publish(im_msg.header)

        # Extract the image
        im = numpify(im_msg)
        height, width = im.shape[:2]

        # Label each connected blob in the image.
        im2 = (im > 128).astype(bool)
        labels, num_labels = scipy.ndimage.measurements.label(im2)

        # no blobs?
        if num_labels == 0:
            self.pub_marker.publish(PointStamped(
                header=Header(frame_id="base_link", stamp=im_msg.header.stamp),
                point=Point(x=np.nan, y=np.nan, z=0)
            ))
            return

        # Calculate the size of each blob.
        blob_sizes = scipy.ndimage.measurements.sum(im2, labels=labels, index=xrange(0,num_labels+1))

        # Find the biggest blob.
        biggest_blob = np.argmax(blob_sizes) - 1
        pp = scipy.ndimage.measurements.find_objects(labels)[biggest_blob]
        bbox = BoundingBox(pp[1].start, pp[0].start, pp[1].stop, pp[0].stop)

        # Calculate centroid (units of pixels).
        cx, cy = np.mean([bbox.maxx, bbox.minx]), np.mean([bbox.maxy, bbox.miny])

        p_matrix = np.array(image_info.P).reshape((3, 4))
        marker_position = self.get_position(cx, cy, p_matrix, im_msg.header)
        if marker_position is None:
            return

        self.pub_marker.publish(PointStamped(
            header=Header(frame_id="base_link", stamp=im_msg.header.stamp),
            point=msgify(Point, marker_position)
        ))

        # Make overlay visualizations.
        debug_overlay = np.zeros((height, width, 3), dtype=np.uint8)
        debug_overlay[...,0] = im
        debug_overlay[...,1] = im
        debug_overlay[...,2] = im
        self.draw_bbox(debug_overlay, bbox)
        self.draw_point(debug_overlay, cx, cy)
        debug_overlay_msg = msgify(Image, debug_overlay, encoding='rgb8')
        debug_overlay_msg.header = im_msg.header
        self.pub_debug_overlay.publish(debug_overlay_msg)

        # Announce that a packet has left the node.
        self.pub_packet_left_node.publish(im_msg.header)
 def offset_goal():
     pose = PoseStamped()
     pose.header.frame_id = 'map'
     goal_pose = goal()  # type: PoseStamped
     position = numpify(goal_pose.pose.position)
     orientation = numpify(goal_pose.pose.orientation)
     position += qv_mult(orientation, np.array([-offset, 0.0, 0.0]))
     pose.pose.position = msgify(Point, position)
     pose.pose.orientation = msgify(Quaternion, orientation)
     return pose
示例#5
0
    def test_point(self):
        p = Point(1, 2, 3)

        p_arr = ros_numpy.numpify(p)
        np.testing.assert_array_equal(p_arr, [1, 2, 3])

        p_arrh = ros_numpy.numpify(p, hom=True)
        np.testing.assert_array_equal(p_arrh, [1, 2, 3, 1])

        self.assertEqual(p, ros_numpy.msgify(Point, p_arr))
        self.assertEqual(p, ros_numpy.msgify(Point, p_arrh))
        self.assertEqual(p, ros_numpy.msgify(Point, p_arrh * 2))
示例#6
0
    def test_point(self):
        p = Point(1, 2, 3)

        p_arr = ros_numpy.numpify(p)
        np.testing.assert_array_equal(p_arr, [1, 2, 3])

        p_arrh = ros_numpy.numpify(p, hom=True)
        np.testing.assert_array_equal(p_arrh, [1, 2, 3, 1])

        self.assertEqual(p, ros_numpy.msgify(Point, p_arr))
        self.assertEqual(p, ros_numpy.msgify(Point, p_arrh))
        self.assertEqual(p, ros_numpy.msgify(Point, p_arrh * 2))
示例#7
0
 def on_enter(self, userdata):
     post = posts[userdata.leg_number]
     if not post.has_seen():
         self._error = True
     target_pose = PoseStamped()
     point = numpify(post.position.point)
     normal = numpify(post.normal.vector)
     target_pose.header.frame_id = post.pose.header.frame_id
     target_pose.pose.position = msgify(Point, point + normal * 2)
     target_pose.pose.orientation = msgify(Quaternion,
                                           normal_to_quaternion(-normal))
     userdata.target_pose = target_pose
示例#8
0
    def __init__(self, number):  # int: (str) -> None
        pose_name = 'S{}'.format(number)
        position = np.array([float(x) for x in rospy.get_param('named_poses/{}/position'.format(pose_name))])
        orientation = np.array([float(x) for x in rospy.get_param('named_poses/{}/orientation'.format(pose_name))])
        self._pose = PoseStamped()
        self._pose.header.frame_id = 'map'
        self._pose.pose.position = msgify(Point, position)
        self._pose.pose.orientation = msgify(Quaternion, orientation)
        self._contains = set()
        self._number = number

        self._pose_publisher = rospy.Publisher('/viz/parking_square_{}'.format(number), PoseStamped, latch=True, queue_size=1)
        self._pose_publisher.publish(self.pose)
示例#9
0
    def test_vector3(self):
        v = Vector3(1, 2, 3)

        v_arr = ros_numpy.numpify(v)
        np.testing.assert_array_equal(v_arr, [1, 2, 3])

        v_arrh = ros_numpy.numpify(v, hom=True)
        np.testing.assert_array_equal(v_arrh, [1, 2, 3, 0])

        self.assertEqual(v, ros_numpy.msgify(Vector3, v_arr))
        self.assertEqual(v, ros_numpy.msgify(Vector3, v_arrh))

        with self.assertRaises(AssertionError):
            ros_numpy.msgify(Vector3, np.array([0, 0, 0, 1]))
示例#10
0
    def test_vector3(self):
        v = Vector3(1, 2, 3)

        v_arr = ros_numpy.numpify(v)
        np.testing.assert_array_equal(v_arr, [1, 2, 3])

        v_arrh = ros_numpy.numpify(v, hom=True)
        np.testing.assert_array_equal(v_arrh, [1, 2, 3, 0])

        self.assertEqual(v, ros_numpy.msgify(Vector3, v_arr))
        self.assertEqual(v, ros_numpy.msgify(Vector3, v_arrh))

        with self.assertRaises(AssertionError):
            ros_numpy.msgify(Vector3, np.array([0, 0, 0, 1]))
示例#11
0
 def on_enter(self, userdata):
     gate = gates[userdata.leg_number]
     if not gate.has_seen():
         self._error = True
         return
     point = numpify(gate.position.point)
     normal = numpify(gate.normal.vector)
     target_pose = PoseStamped()
     target_pose.header.frame_id = gate.position.header.frame_id
     target_pose.pose.position = msgify(Point,
                                        point + normal * self._offset)
     target_pose.pose.orientation = msgify(Quaternion,
                                           normal_to_quaternion(-normal))
     userdata.target_pose = target_pose
示例#12
0
    def echoes_callback(echo):
        echo['data'] = echo['data'][np.bitwise_and(
            echo['data']['flags'],
            0x01).astype(np.bool)]  #keep valid echoes only
        indices, flags, distances, amplitudes = [
            echo['data'][x]
            for x in ['indices', 'flags', 'distances', 'amplitudes']
        ]
        stamp = rospy.Time.now()

        if pub_raw.get_num_connections() > 0:
            pub_raw.publish(
                ros_numpy.msgify(PointCloud2, echo['data'], stamp, frame_id))

        if pub_cloud.get_num_connections() > 0:
            struct_cloud = np.empty(indices.size,
                                    dtype=[('x', np.float32),
                                           ('y', np.float32),
                                           ('z', np.float32),
                                           ('intensity', np.float32)])

            points = clouds.to_point_cloud(indices, distances, directions,
                                           np.float32)

            struct_cloud['x'] = points[:, 0]
            struct_cloud['y'] = points[:, 1]
            struct_cloud['z'] = points[:, 2]

            struct_cloud['intensity'] = amplitudes
            pub_cloud.publish(
                ros_numpy.msgify(PointCloud2, struct_cloud, stamp, frame_id))

        if pub_triangles.get_num_connections() > 0:
            points, quad_amplitudes, quad_indices = clouds.to_quad_cloud(
                indices, distances, amplitudes, quad_directions, specs.v,
                specs.h, np.float32)

            stl_points = points[quad_indices]
            stl_amplitudes = quad_amplitudes[quad_indices]

            marker = Marker()
            marker.header.stamp = stamp
            marker.header.frame_id = frame_id
            marker.type = Marker.TRIANGLE_LIST
            marker.scale = Vector3(1, 1, 1)
            marker.points = [Point(x[0], x[1], x[2])
                             for x in stl_points]  #TODO: optimize me
            marker.colors = [ColorRGBA(a, a, a, 1)
                             for a in stl_amplitudes]  #TODO: optimize me
            pub_triangles.publish(marker)
def main():
    colorama.init(autoreset=True)
    parser = argparse.ArgumentParser(formatter_class=my_formatter)
    parser.add_argument("results_dir",
                        type=pathlib.Path,
                        help='directory containing metrics.json')
    parser.add_argument("--trial-idx",
                        type=int,
                        help='which plan to show',
                        default=0)

    rospy.init_node("play_dragging_plan")

    action_srv = rospy.ServiceProxy("execute_dual_gripper_action",
                                    DualGripperTrajectory)

    args = parser.parse_args()

    with (args.results_dir / 'metadata.json').open('r') as metadata_file:
        metadata_str = metadata_file.read()
        metadata = json.loads(metadata_str)
    scenario = get_scenario(metadata['scenario'])

    with gzip.open(args.results_dir / f'{args.trial_idx}_metrics.json.gz',
                   'rb') as metrics_file:
        metrics_str = metrics_file.read()
    datum = json.loads(metrics_str.decode("utf-8"))

    all_actions = []
    steps = datum['steps']
    for step_idx, step in enumerate(steps):
        if step['type'] == 'executed_plan':
            actions = step['planning_result']['actions']
        elif step['type'] == 'executed_recovery':
            actions = [step['recovery_action']]

        all_actions.extend(actions)

    for action in all_actions:
        target_gripper1_point = ros_numpy.msgify(
            Point, np.array(action['gripper_position']))
        target_gripper1_point.z = -0.39
        target_gripper2_point = ros_numpy.msgify(Point,
                                                 np.array([0.45, -0.2, 0.08]))

        req = DualGripperTrajectoryRequest()
        req.gripper1_points.append(target_gripper1_point)
        req.gripper2_points.append(target_gripper2_point)
        action_srv(req)
示例#14
0
    def test_bad_encodings(self):
        mono_arr = np.random.randint(0, 256, size=(240, 360)).astype(np.uint8)
        mono_arrf = np.random.randint(0, 256, size=(240, 360)).astype(np.float32)
        rgb_arr = np.random.randint(0, 256, size=(240, 360, 3)).astype(np.uint8)
        rgb_arrf = np.random.randint(0, 256, size=(240, 360, 3)).astype(np.float32)

        with self.assertRaises(TypeError):
            msg = ros_numpy.msgify(Image, rgb_arr, encoding='mono8')
        with self.assertRaises(TypeError):
            msg = ros_numpy.msgify(Image, mono_arrf, encoding='mono8')

        with self.assertRaises(TypeError):
            msg = ros_numpy.msgify(Image, rgb_arrf, encoding='rgb8')
        with self.assertRaises(TypeError):
            msg = ros_numpy.msgify(Image, mono_arr, encoding='rgb8')
示例#15
0
def camera_callback(rgb_image, depth_image, camera_info):
    global wgan
    global is_initialized
    global underwater_image_pub
    global underwater_camera_info_pub
    global max_depth

    if is_initialized:
        try:
            cv_rgb_image = CvBridge().imgmsg_to_cv2(rgb_image, "rgb8")
            data = ros_numpy.numpify(depth_image)
            # fill NaNs with maximum depth value
            # because simulated Kinect reports NaN where depth is higher than maximum hardware depth
            where_are_NaNs = np.isnan(data)
            data[where_are_NaNs] = max_depth
            #cv2.normalize(data, data, 0, 255, cv2.NORM_MINMAX)
            cv_depth_image = data

        except CvBridgeError as e:
            print(e)
        cv_underwater_image = wgan.predict(cv_rgb_image, cv_depth_image)
        #cv2.normalize(cv_underwater_image, cv_underwater_image, 0, 255, cv2.NORM_MINMAX)
        #cv_underwater_image = np.array(cv_underwater_image).astype(np.uint8)
        underwater_image = ros_numpy.msgify(Image, cv_underwater_image, "rgb8")
        underwater_image.header = rgb_image.header
        underwater_image_pub.publish(underwater_image)
        underwater_camera_info_pub.publish(camera_info)
示例#16
0
 def to_point_cloud(self, color_map=None):
     points = self.to_points(color_map)
     point_cloud = ros_numpy.msgify(PointCloud2,
                                    points,
                                    stamp=self.last_update_time,
                                    frame_id=self.voi.frame_id)
     return point_cloud
示例#17
0
    def test_roundtrip_little_endian(self):
        arr = np.random.randint(0, 256, size=(240, 360)).astype('<u2')
        msg = ros_numpy.msgify(Image, arr, encoding='mono16')
        self.assertEqual(msg.is_bigendian, False)
        arr2 = ros_numpy.numpify(msg)

        np.testing.assert_equal(arr, arr2)
    def run(self):
        
        while True:
            #We process detection
            detections, img = detect.Imageprocessing(self.net, "./treated_current_pic_"+self.target+".png")
            
            #Send image to ROS topic
            glob.pub.MUT.acquire()
            glob.pub.image.publish(msgify(Image, jetson.utils.cudaToNumpy(img), "rgb8"))
            glob.pub.MUT.release()
            
            #if we detect something set flag to block ROS periodic sending, ROS thread clears it
            if (len(detections) != 0):
                print('size detections: ', len(detections))
                glob.detection_flag.MUT.acquire()
                glob.detection_flag.value = 1
                glob.detection_flag.MUT.release()

            glob.detection_flag.MUT.acquire() #Debug
            print("FLAG = ", glob.detection_flag.value) #Debug
            glob.detection_flag.MUT.release() #Debug

            #Enumerate all the detections for hurdles detection
            for detection in detections:
                print("\nWe detected a " + self.net.GetClassDesc(detection.ClassID) + "\n")
                glob.pub.MUT.acquire()
                glob.pub.value.publish(self.detection_to_ROS_number(detection.ClassID))
                glob.pub.left.publish(detection.Left)
                glob.pub.right.publish(detection.Right)
                glob.pub.top.publish(detection.Top)
                glob.pub.bottom.publish(detection.Bottom)
                glob.pub.MUT.release()
示例#19
0
    def sub_image(self, im_msg):
        """
        Take in an image, and publish a black and white image indicatng which pixels are cone-like
        """
        if self.lookup is None: return

        old_message_header = deepcopy(im_msg.header)

        # Announce that we have received a packet
        self.pub_packet_entered_node.publish(old_message_header)

        # extract the image
        im = numpify(im_msg)

        # Downsample.
        if self.downsample < 1:
            im = scipy.misc.imresize(im, self.downsample)

        im_mask = self.lookup[self.lookup_idx(im)]

        if self.morph_open:
            open_size = self.morph_size
            open_structure = np.ones((open_size, open_size))
            im_mask = scipy.ndimage.morphology.binary_opening(
                im_mask, iterations=self.morph_iter, structure=open_structure)
            im_mask = (im_mask * 255).astype(np.uint8)

        # build the message
        im_mask_msg = msgify(Image, im_mask, encoding='mono8')
        im_mask_msg.header = old_message_header
        self.pub_mask.publish(im_mask_msg)

        # Announce that a packet has left the node.
        self.pub_packet_left_node.publish(old_message_header)
示例#20
0
def main():
    rospy.init_node("visualization_node", anonymous=True)
    node = visualization_node()

    context_box = zmq.Context()
    socket_box = context_box.socket(zmq.SUB)
    socket_box.setsockopt(zmq.SUBSCRIBE, b"")
    print("Collecting bboxs...")
    socket_box.connect("tcp://localhost:5557")

    context_grid = zmq.Context()
    socket_grid = context_grid.socket(zmq.SUB)
    socket_grid.setsockopt(zmq.SUBSCRIBE, b"")
    print("Collecting occupancy grid...")
    socket_grid.connect("tcp://localhost:5558")

    while not rospy.is_shutdown():
        if socket_box.poll(timeout=1) != 0:
            bbox = recv_array(socket_box)
            line_msg = make_box_msg(bbox[0:8, :])
            node.bbox_pub.publish(line_msg)

            arrow_msg = make_arrow(bbox[16:18, :])
            node.arrow_pub.publish(arrow_msg)

        if socket_grid.poll(timeout=1) != 0:
            grid_image = recv_array(socket_grid)
            grid_image_msg = ros_numpy.msgify(Image,
                                              grid_image,
                                              encoding='rgb8')
            node.grid_image_pub.publish(grid_image_msg)
 def __init__(self, number):  # int: (str) -> None
     pose_name = 'S{}'.format(number)
     position = np.array([
         float(x) for x in rospy.get_param('named_poses/{}/position'.format(
             pose_name))
     ])
     orientation = np.array([
         float(x) for x in rospy.get_param(
             'named_poses/{}/orientation'.format(pose_name))
     ])
     self._pose = PoseStamped()
     self._pose.header.frame_id = 'map'
     self._pose.pose.position = msgify(Point, position)
     self._pose.pose.orientation = msgify(Quaternion, orientation)
     self._contains = set()
     self._number = number
def callback(data):
    data_np = ros_numpy.numpify(data)

    coords = np.zeros((2, data_np.shape[0]))
    coords[0] = data_np['x']
    coords[1] = data_np['y']

    z = data_np['z']

    coords = np.floor(
        np.multiply(np.divide(np.add(coords, 100), 200),
                    img_size - 1)).astype(int)
    img_np = np.zeros((img_size, img_size, 3), dtype=np.uint8)

    for i in range(data_np.shape[0]):
        img_np[coords[0][i], coords[1][i]] += (z[i] * gain).astype(np.uint8)

    top_left_bounds = np.ceil(img_size / 2).astype(int) - mask_size // 2
    bottom_right_bounds = np.ceil(img_size / 2).astype(int) + mask_size // 2

    img_mask = np.flip(img_np[top_left_bounds:bottom_right_bounds,
                              top_left_bounds:bottom_right_bounds])

    img_mask[25, 25] = (255, 0, 0)
    img_mask[24, 25] = (0, 255, 0)
    img_mask[23, 25] = (0, 255, 0)

    pubMask.publish(ros_numpy.msgify(Image, img_mask, encoding='rgb8'))
    def calculate_joints(self, position):

        self.joint_angle_matricies = []
        for angle in position:
            self.joint_angle_matricies.append(
                tf.transformations.euler_matrix(0, 0, angle))
        T_c = [np.identity(4)]
        link_states = LinkStates()
        for index in xrange(len(self.urdf_tranform_matricies)):
            urdf_transform_matrix = self.urdf_tranform_matricies[index]
            joint_angle_matrix = self.joint_angle_matricies[index]
            transform_matrix = np.dot(urdf_transform_matrix,
                                      joint_angle_matrix)
            if index in (6, 7, 8):  #sets parent of fingers to link6
                index = 6
            elif index in (9, 10, 11):  #sets parent of fingertip
                index -= 2
            T_c.append(np.dot(T_c[index], transform_matrix))
            link_states.pose.append(msgify(Pose, T_c[-1]))
            link_states.name.append(self.urdf_transforms[index].child_frame_id)
            #print transforms.header
            #print link_states.name[-1]
            #print link_states.pose[-1]
            #print '-----------------------------------------------'
        self.link_states = link_states
示例#24
0
    def _video_thread(self):
        container = av.open(self._tello.get_udp_video_address())

        frame_skip = 300
        seq = 0
        while not rospy.is_shutdown():
            for frame in container.decode(video=0):
                if 0 < frame_skip:
                    frame_skip = frame_skip - 1
                    continue
                start_time = time.time()
                image_msg_time = rospy.Time.now()

                image = np.array(frame.to_image())
                image_msg = ros_numpy.msgify(Image, image, encoding='rgb8')
                image_msg.header.stamp = image_msg_time
                image_msg.header.seq = seq
                self._camera_raw_pub.publish(image_msg)

                image_msg = self._bridge.cv2_to_compressed_imgmsg(image)
                image_msg.header.stamp = image_msg_time
                image_msg.header.seq = seq
                self._camera_pub.publish(image_msg)

                if frame.time_base < 1.0 / 60:
                    time_base = 1.0 / 60
                else:
                    time_base = frame.time_base
                frame_skip = int((time.time() - start_time) / time_base)

                seq += 1
示例#25
0
    def slam_callback(self, pose):
        self.slam_pose_raw = ros_numpy.numpify(
            pose.pose)  #homogeneous transformation matrix from the origin

        self.slam_pose_np = np.dot(self.slam_pose_correction,
                                   self.slam_pose_raw)
        self.slam_pose_np = self.slam_pose_np * self.scale_factor_matrix

        self.slam_pose = ros_numpy.msgify(Pose, self.slam_pose_np)

        #bebop camera link correction and camera calibration correction
        ang_z = self.euler_from_pose(self.slam_pose)[2]
        self.slam_pose.position.x += -0.11 * np.cos(ang_z)
        self.slam_pose.position.y += -0.11 * np.sin(ang_z)

        self.slam_pose_np = ros_numpy.numpify(self.slam_pose)

        self.last_slam_time = time.time()
        if not self.odom_pose == None:
            #calculates the transfor matrix for the odom position to the modified slam coords system (assumed as true value)
            self.odom_pose_correction = np.dot(
                np.linalg.inv(self.odom_pose_raw_np), self.slam_pose_np)
        else:
            rospy.loginfo("Havent received any odom coord yet!")
        self.current_pose = self.slam_pose
        self.current_pose_np = self.slam_pose_np
示例#26
0
    def test_roundtrip_little_endian(self):
        arr = np.random.randint(0, 256, size=(240, 360)).astype('<u2')
        msg = ros_numpy.msgify(Image, arr, encoding='mono16')
        self.assertEqual(msg.is_bigendian, False)
        arr2 = ros_numpy.numpify(msg)

        np.testing.assert_equal(arr, arr2)
    def _callback(self, goal):

        t_start = rospy.get_time()

        # Get image
        image = cv2.cvtColor(self.bridge.compressed_imgmsg_to_cv2(goal.image),
                             cv2.COLOR_BGR2RGB)

        # Calculate mask
        with torch.no_grad():
            image_tensor = torch.tensor(
                prepare_img(image).transpose(2, 0, 1)[None]).float()
            image_input = image_tensor.cuda(self.gpu)

            mask = self.model(image_input)[0].data.cpu().numpy().transpose(
                1, 2, 0)
            mask = cv2.resize(mask,
                              image.shape[:2][::-1],
                              interpolation=cv2.INTER_CUBIC)
            mask = mask.argmax(axis=2).astype(np.uint8)

        # Visualize results
        if self.visualization_activated:
            image[:, :, 0][mask == 0] = 0
            image[:, :, 1][mask == 0] = 0
            image[:, :, 2][mask == 0] = 0
            self.pub_visualization.publish(
                ros_numpy.msgify(Image, image, encoding='8UC3'))

        # Publish results
        print('Body detection successful. Current Hz-rate:\t' +
              str(1 / (rospy.get_time() - t_start)))
        self.server.set_succeeded(
            SemSegBodyActResult(mask=self.bridge.cv2_to_compressed_imgmsg(
                mask, dst_format='png')))
示例#28
0
    def test_image_encoding(self):
        if not rospy.get_node_uri():
            rospy.init_node("topic_store_tests")

        client = MongoStorage(collection="python_tests")

        # Test ROS_Message Serialisation with common Image Types
        from topic_store.utils import _numpy_types as numpy_types

        for encoding, np_type in numpy_types.items():
            size = (32, 32, np_type[1]) if np_type[1] != 1 else (32, 32)
            random_array = np.random.random(size)
            typed_array = (random_array * 255.0).astype(np_type[0])
            message = ros_numpy.msgify(Image, typed_array, encoding=encoding)

            # Insert image message
            im_document = TopicStore({"image": message})
            im_result = client.insert_one(im_document)

            # Get image message and check data is the same
            returned_im_document = client.find_by_id(im_result.inserted_id)
            assert returned_im_document.id == im_result.inserted_id
            retrieved_array = ros_numpy.numpify(
                returned_im_document.msgs["image"])
            np.testing.assert_equal(typed_array, retrieved_array)

            # Delete image message
            client.delete_by_id(im_result.inserted_id)
示例#29
0
    def _callback(self, goal):

        t_start = rospy.get_time()

        # Get image
        image = cv2.cvtColor(self.bridge.compressed_imgmsg_to_cv2(goal.image),
                             cv2.COLOR_BGR2RGB)

        # Calculate Mask
        mask = hand_segmentation(image, self.segmentation_module)

        # Visualize results
        if self.visualization_activated:
            image[:, :, 0][mask == 0] = 0
            image[:, :, 1][mask == 0] = 0
            image[:, :, 2][mask == 0] = 0
            self.pub_visualization.publish(
                ros_numpy.msgify(Image, image, encoding='8UC3'))

        # Publish results
        print('Body detection successful. Current Hz-rate:\t' +
              str(1 / (rospy.get_time() - t_start)))
        self.server.set_succeeded(
            SemSegHandActResult(mask=self.bridge.cv2_to_compressed_imgmsg(
                mask, dst_format='png')))
示例#30
0
    def lidar_callback(self, msg):
        # time1 = time.time()
        pc = ros_numpy.numpify(msg)[:, self.ind_list].flatten()
        pc = pc[np.where((pc['x'] < -1.5) & (pc['y'] > -1.5)
                         & (pc['y'] < 1.5))]
        pc_cropped = np.empty((3, pc['x'].shape[0]))
        pc_cropped[0, :] = pc['x']
        pc_cropped[1, :] = pc['y']
        pc_cropped[2, :] = pc['z']
        pc_transformed = self.rotation(pc_cropped)
        pc_transformed = np.concatenate(
            (pc_transformed, np.expand_dims(pc['intensity'], axis=0)), axis=0)
        # print(pc_transformed.shape)
        pc['x'] = pc_transformed[0, :]
        pc['y'] = pc_transformed[1, :]
        pc['z'] = pc_transformed[2, :]

        msg_transformed = ros_numpy.msgify(PointCloud2, pc)
        msg_transformed.header.frame_id = '/os1_lidar'
        self.pc_pub.publish(msg_transformed)
        # print('elapsed time: ', time.time() - time1)
        # self.send_array(self.socket, pc_transformed)
        print(str(msg.header.stamp))
        np.save(str(msg.header.stamp) + '.npy', pc_transformed)
        rospy.sleep(1)
    def sub_image(self, im_msg):
        """
        Take in an image, and publish a black and white image indicatng which pixels are cone-like
        """
        if self.lookup is None: return

        old_message_header = deepcopy(im_msg.header)

        # Announce that we have received a packet
        self.pub_packet_entered_node.publish(old_message_header)

        # extract the image
        im = numpify(im_msg)

        # Downsample.
        if self.downsample < 1:
            im = scipy.misc.imresize(im, self.downsample)

        im_mask = self.lookup[self.lookup_idx(im)]

        if self.morph_open:
            open_size = self.morph_size
            open_structure = np.ones((open_size, open_size))
            im_mask = scipy.ndimage.morphology.binary_opening(
                im_mask, iterations=self.morph_iter, structure=open_structure)
            im_mask = (im_mask * 255).astype(np.uint8)

        # build the message
        im_mask_msg = msgify(Image, im_mask, encoding='mono8')
        im_mask_msg.header = old_message_header
        self.pub_mask.publish(im_mask_msg)

        # Announce that a packet has left the node.
        self.pub_packet_left_node.publish(old_message_header)
示例#32
0
    def test_roundtrip_numpy(self):

        points_arr = self.makeArray(100)
        cloud_msg = ros_numpy.msgify(numpy_msg(PointCloud2), points_arr)
        new_points_arr = ros_numpy.numpify(cloud_msg)

        np.testing.assert_equal(points_arr, new_points_arr)
 def calculate_joints(self, position):
    
     self.joint_angle_matricies = []
     for angle in position:
         self.joint_angle_matricies.append(transformations.euler_matrix(0, 0, angle))
     T_c = [np.identity(4)]
     tf_msg = TFMessage() 
     for index in xrange(len(self.urdf_transform_matricies)):
         urdf_transform_matrix = self.urdf_transform_matricies[index]
         joint_angle_matrix = self.joint_angle_matricies[index]
         transform_matrix = np.dot(urdf_transform_matrix, joint_angle_matrix)
         
         tf_stamp = TransformStamped()
         tf_stamp.child_frame_id = self.urdf_transforms[index].child_frame_id
         tf_stamp.header.frame_id = self.urdf_transforms[index].header.frame_id
         if index in (8, 10): #sets parent of fingers to link6
             index = 6
         T_c.append(np.dot(T_c[index], transform_matrix))
         
         
         tf_stamp.transform = msgify(Transform, T_c[-1])
         #tf_stamp.transform = msgify(Transform, transform_matrix)
         tf_msg.transforms.append(tf_stamp)
         #print transforms.header
         #print link_states.name[-1]
         #print link_states.pose[-1]
         #print '-----------------------------------------------'
     
     return tf_msg
    def merged_point_publish(self, point_center, point_left, point_right):
        print('start merging...')
        self.merhing_flag = True
        self.start_time = rospy.Time.now().to_sec()

        point_left = do_transform_cloud(point_left, self.tf_left)
        point_right = do_transform_cloud(point_right, self.tf_right)

        point_center = numpify(point_center)
        point_left = numpify(point_left)
        point_right = numpify(point_right)

        point_set = np.append(np.append(point_center, point_left), point_right)
        # point_set = np.append(point_right, point_left)

        merged_points = msgify(PointCloud2, point_set)

        pub1.publish(merged_points)
        self.elapsed = rospy.Time.now().to_sec() - self.start_time
        pub2.publish(self.elapsed)
        print('Merged PointCloud Data Set is Published')

        self.center_flag = False
        self.left_flag = False
        self.right_flag = False
        self.merhing_flag = False
示例#35
0
    def test_convert_dtype_inner(self):
        fields = [
            PointField(name='x',
                       offset=0,
                       count=1,
                       datatype=PointField.FLOAT32),
            PointField(name='y',
                       offset=4,
                       count=1,
                       datatype=PointField.FLOAT32),
            PointField(name='vectors',
                       offset=8,
                       count=3,
                       datatype=PointField.FLOAT32)
        ]

        dtype = np.dtype([('x', np.float32), ('y', np.float32),
                          ('vectors', np.float32, (3, ))])

        conv_fields = ros_numpy.msgify(PointField, dtype, plural=True)
        self.assertSequenceEqual(fields, conv_fields,
                                 'dtype->Pointfield with inner dimensions')

        conv_dtype = ros_numpy.numpify(fields, point_step=8)
        self.assertEqual(dtype, conv_dtype,
                         'Pointfield->dtype with inner dimensions')
    def publish_pc_bnds(self, pc_bnds_dict):
        pc_bnds = np.concatenate(
            (
                pc_bnds_dict["frontal_low_pc"],
                #pc_bnds_dict["frontal_mid_pc"],
                pc_bnds_dict["fl_flipper_pc"],
                pc_bnds_dict["fr_flipper_pc"],
                pc_bnds_dict["rl_flipper_pc"],
                pc_bnds_dict["rr_flipper_pc"]),
            axis=1)

        pc_bnds_data = np.zeros(len(pc_bnds[0]),
                                dtype=[('x', np.float32), ('y', np.float32),
                                       ('z', np.float32),
                                       ('vectors', np.float32, (3, ))])

        pc_bnds_data['x'] = pc_bnds[0, :]
        pc_bnds_data['y'] = pc_bnds[1, :]
        pc_bnds_data['z'] = pc_bnds[2, :]
        pc_bnds_data['vectors'] = np.arange(len(pc_bnds[0]))[:, np.newaxis]

        msg = ros_numpy.msgify(PointCloud2, pc_bnds_data)
        msg.header.frame_id = self.config["robot_prefix"] + "/" + self.config[
            "bl_zpr_frame_name"]
        msg.header.stamp = rospy.Time.now()

        self.pc_bnds_publisher.publish(msg)
示例#37
0
文件: rrt.py 项目: g41903/MIT-RACECAR
    def map_timer_callback(self, event):
        if self.debug_merged_map:
            map_msg = ros_numpy.msgify(ros_numpy.numpy_msg(OccupancyGrid), self.map.grid, info=self.map.info)
            map_msg.header = Header()
            map_msg.header.stamp = rospy.Time.now()
            map_msg.header.frame_id = self.map.frame

            self.pub_merged_map.publish(map_msg)
示例#38
0
    def _make_local_map(self, scan):
        #target frame is map_frame, source frame is laser_link
        trans = self.tf_buffer.lookup_transform(
            target_frame=self.map_frame,
            source_frame=scan.header.frame_id,
            time=scan.header.stamp,
            timeout=rospy.Duration(5)
        )

        pos = trans.transform.translation
        orient = trans.transform.rotation

        # transform from base to map
        transform = np.dot(
            transformations.translation_matrix([pos.x, pos.y, pos.z]),
            transformations.quaternion_matrix([orient.x, orient.y, orient.z, orient.w])
        )

        self.map_info.origin.position.x = pos.x - self.map_info.resolution*self.width/2.0
        self.map_info.origin.position.y = pos.y - self.map_info.resolution*self.height/2.0
        self.ros_map.info = self.map_info
        self.ros_map.data[...] = -1
        mcl_local_map = mcl.Map(self.ros_map)

        mask = (scan.ranges < scan.range_max) & (scan.ranges > scan.range_min)
        angles = np.arange(scan.angle_min,scan.angle_max,scan.angle_increment)

        x = scan.ranges[mask]*np.cos(angles[mask])
        y = scan.ranges[mask]*np.sin(angles[mask])

        # set the last component to zero to ignore translation
        ii, jj = mcl_local_map.index_at(
            np.vstack((x,y,np.zeros(np.sum(mask)),np.ones(np.sum(mask)))).T,
            world_to_map=transform
        )

        ok = (
            (jj >= 0) & (jj < self.width) &
            (ii >= 0) & (ii < self.height)
        )
        ii = ii[ok]
        jj = jj[ok]
        mcl_local_map.grid[ii,jj] = 100


        ### TODO: figure out faster serialization issue
        map_msg = msgify(numpy_msg(OccupancyGrid), mcl_local_map.grid, info=self.map_info)
        map_msg.header = scan.header
        map_msg.header.frame_id = 'map'
        return map_msg
示例#39
0
    def _make_local_map(self, point):
        #target frame is map_frame, source frame is laser_link

        self.map_info.origin.position = point.point
        self.ros_map.info = self.map_info
        self.ros_map.data[...] = -1
        mcl_local_map = mcl.Map(self.ros_map)
        mcl_local_map.grid[:,:] = 100

        ### TODO: figure out faster serialization issue
        map_msg = msgify(numpy_msg(OccupancyGrid), mcl_local_map.grid, info=self.map_info)
        map_msg.header = point.header
        map_msg.header.frame_id = 'map'
        return map_msg
示例#40
0
    def sub_image(self, im_msg):
        """
        Take in an image, and publish a black and white image indicatng which pixels are cone-like
        """
        old_message_header = deepcopy(im_msg.header)

        # Announce that we have received a packet
        self.pub_packet_entered_node.publish(old_message_header)

        # extract the image
        im = numpify(im_msg)

        # Downsample.
        if self.downsample < 1:
            im = scipy.misc.imresize(im, self.downsample)

        if self.mode == 'linear':
            is_cone = np.ones(im.shape[:-1], dtype=np.bool)
            im = im.astype(np.float32)
            # red channel
            for theta in thetas:
                is_cone = is_cone & (im.dot(theta[:-1]) + theta[-1] > 0)
            im_mask = np.uint8(is_cone * 255)

        elif self.mode == 'lookup':
            self._init_lookup()
            im_mask = self.lookup[self.lookup_idx(im)]

        else:
            raise ValueError("Unrecognized thresholding mode.")

        if self.morph_open:
            open_size = self.morph_size
            open_structure = np.ones((open_size, open_size))
            im_mask = scipy.ndimage.morphology.binary_opening(
                im_mask, iterations=self.morph_iter, structure=open_structure)
            im_mask = (im_mask * 255).astype(np.uint8)

        # build the message
        im_mask_msg = msgify(Image, im_mask, encoding='mono8')
        im_mask_msg.header = old_message_header
        self.pub_mask.publish(im_mask_msg)
        
        # Announce that a packet has left the node.
        self.pub_packet_left_node.publish(old_message_header)
示例#41
0
    def test_pose(self):
        t = Pose(
            position=Point(1.0, 2.0, 3.0),
            orientation=Quaternion(*transformations.quaternion_from_euler(np.pi, 0, 0))
        )

        t_mat = ros_numpy.numpify(t)

        np.testing.assert_allclose(t_mat.dot([0, 0, 1, 1]), [1.0, 2.0, 2.0, 1.0])

        msg = ros_numpy.msgify(Pose, t_mat)

        np.testing.assert_allclose(msg.position.x, t.position.x)
        np.testing.assert_allclose(msg.position.y, t.position.y)
        np.testing.assert_allclose(msg.position.z, t.position.z)
        np.testing.assert_allclose(msg.orientation.x, t.orientation.x)
        np.testing.assert_allclose(msg.orientation.y, t.orientation.y)
        np.testing.assert_allclose(msg.orientation.z, t.orientation.z)
        np.testing.assert_allclose(msg.orientation.w, t.orientation.w)
示例#42
0
    def test_transform(self):
        t = Transform(
            translation=Vector3(1, 2, 3),
            rotation=Quaternion(*transformations.quaternion_from_euler(np.pi, 0, 0))
        )

        t_mat = ros_numpy.numpify(t)

        np.testing.assert_allclose(t_mat.dot([0, 0, 1, 1]), [1.0, 2.0, 2.0, 1.0])

        msg = ros_numpy.msgify(Transform, t_mat)

        np.testing.assert_allclose(msg.translation.x, t.translation.x)
        np.testing.assert_allclose(msg.translation.y, t.translation.y)
        np.testing.assert_allclose(msg.translation.z, t.translation.z)
        np.testing.assert_allclose(msg.rotation.x, t.rotation.x)
        np.testing.assert_allclose(msg.rotation.y, t.rotation.y)
        np.testing.assert_allclose(msg.rotation.z, t.rotation.z)
        np.testing.assert_allclose(msg.rotation.w, t.rotation.w)
示例#43
0
    def sub_marker(self, marker):
        marker_loc = numpify(marker.point, hom=True)
        if np.isnan(marker_loc).any():
            self.marker_target_pose = None
            return
        trans = self.tf_buffer.lookup_transform(
            target_frame="base_link",
            source_frame=self.map_frame,
            time=marker.header.stamp,
            timeout=rospy.Duration(1)
        )
        transform = numpify(trans.transform)

        marker_loc = marker_loc.dot(transform.T)
        marker_target_pose = PoseStamped()
        marker_target_pose.header = marker.header
        marker_target_pose.header.frame_id = 'map'
        marker_target_pose.pose = Pose(
            msgify(Point, marker_loc),
            Quaternion(0,0,0,1)
        )
        self.marker_target_pose = marker_target_pose
示例#44
0
    def sub_image(self, im_msg, image_info):
        """
        Take a thresholded image and output cone position metrics.
        """
        # Announce that we have received a packet
        self.pub_packet_entered_node.publish(im_msg.header)


        # Extract the image
        im = numpify(im_msg)
        im2 = (im > 160).astype(bool)

        height, width = im.shape[:2]

        # Label each connected blob in the image.
        labels, num_labels = scipy.ndimage.measurements.label(im2)

        msg = CameraObjectsStamped(header=im_msg.header)

        if num_labels == 0:
            self.pub_obj.publish(msg)
            # No objects.
            return

        # Calculate the size of each blob.
        blob_sizes = scipy.ndimage.measurements.sum(im2, labels=labels, index=xrange(0,num_labels+1))

        # Find the biggest blob.
        biggest_blob = np.argmax(blob_sizes) - 1
        pp = scipy.ndimage.measurements.find_objects(labels)[biggest_blob]
        bbox = BoundingBox(pp[1].start, pp[0].start, pp[1].stop, pp[0].stop)

        # Calculate centroid (units of pixels).
        cx, cy = np.mean([bbox.maxx, bbox.minx]), np.mean([bbox.maxy, bbox.miny])

        sx, sy = (bbox.maxx - bbox.minx), (bbox.maxy - bbox.miny)
        # geometric mean

        p_matrix = np.array(image_info.P).reshape((3, 4))

        uvw = p_matrix.dot([self.WIDTH, self.HEIGHT, 0, 0])
        u, v, w = uvw

        cz = np.min([(u / sx), (v / sy)])


        # load the depth image message
        # d_im = numpify(d_im_msg) * 0.001

        # TODO
        # cz = np.mean(d_im[(labels == biggest_blob) & (d_im != 0)]) # get_depth_for(biggest_blob)

        # print u / sx, v / sy, sx, sy, uvw #, np.max(d_im)

        # projection matrix
        # [px, py, 1] = P.dot([X, Y, Z, 1])

        # solve the simultaneous equations
        # [cx, cy, 1] =                        P.dot([X, Y, Z, 1])
        #          cz = Z
        #       =>  0 = np.array([0, 0, 1, -cz]).dot([X, Y, Z, 1])
        try:
            position = np.linalg.solve(
                np.vstack((
                    p_matrix,
                    [0, 0, 1, -cz]
                )),
                np.array([cx, cy, 1, 0])
            )
        except np.linalg.LinAlgError:
            rospy.logwarn("Matrix was singular %s", np.vstack((
                    p_matrix,
                    [0, 0, 1, -cz]
            )))
            return

        # theses are homogeneous coordinates
        position /= position[-1]
        position = Point(*position[:3])

        msg.objects = [
            CameraObject(
                label='cone',
                center=position,
                size=Vector3(
                    x=remap((bbox.maxx - bbox.minx), 0, width, 0, 1),
                    y=remap((bbox.maxy - bbox.miny), 0, height, 0, 1),
                    z=0
                )
            )
        ]
        self.pub_obj.publish(msg)

        # Make overlay visualizations.
        debug_overlay = np.zeros((height, width, 3), dtype=np.uint8)
        debug_overlay[...,0] = im
        debug_overlay[...,1] = im
        debug_overlay[...,2] = im
        self.draw_bbox(debug_overlay, bbox)
        self.draw_point(debug_overlay, cx, cy)
        debug_overlay_msg = msgify(Image, debug_overlay, encoding='rgb8')
        debug_overlay_msg.header = im_msg.header
        self.pub_debug_overlay.publish(debug_overlay_msg)

        # Announce that a packet has left the node.
        self.pub_packet_left_node.publish(im_msg.header)
示例#45
0
    def test_roundtrip_rgb8(self):
        arr = np.random.randint(0, 256, size=(240, 360, 3)).astype(np.uint8)
        msg = ros_numpy.msgify(Image, arr, encoding='rgb8')
        arr2 = ros_numpy.numpify(msg)

        np.testing.assert_equal(arr, arr2)