def axes_correlated_with_input_vector(input_vectors, p=0., seed=None): r""" Calculate a list of 3d unit-vectors whose orientation is correlated with the orientation of `input_vectors`. Parameters ---------- input_vectors : ndarray Numpy array of shape (npts, 3) storing a list of 3d vectors defining the preferred orientation with which the returned vectors will be correlated. Note that the normalization of `input_vectors` will be ignored. p : ndarray, optional Numpy array with shape (npts, ) defining the strength of the correlation between the orientation of the returned vectors and the z-axis. Default is zero, for no correlation. Positive (negative) values of `p` produce galaxy principal axes that are statistically aligned with the positive (negative) z-axis; the strength of this alignment increases with the magnitude of p. When p = 0, galaxy axes are randomly oriented. seed : int, optional Random number seed used to choose a random orthogonal direction Returns ------- unit_vectors : ndarray Numpy array of shape (npts, 3) """ input_unit_vectors = normalized_vectors(input_vectors) assert input_unit_vectors.shape[1] == 3 npts = input_unit_vectors.shape[0] z_correlated_axes = axes_correlated_with_z(p, seed) z_axes = np.tile((0, 0, 1), npts).reshape((npts, 3)) angles = angles_between_list_of_vectors(z_axes, input_unit_vectors) rotation_axes = vectors_normal_to_planes(z_axes, input_unit_vectors) matrices = rotation_matrices_from_angles(angles, rotation_axes) return rotate_vector_collection(matrices, z_correlated_axes)
def assign_central_orientation(self, **kwargs): r""" Assign a set of three orthoganl unit vectors indicating the orientation of the galaxies' major, intermediate, and minor axis Parameters ========== halo_axisA_x, halo_axisA_y, halo_axisA_z : array_like x,y,z components of halo alignment axis Returns ======= major_aixs, intermediate_axis, minor_axis : numpy nd.arrays arrays of galaxies' axes """ if 'table' in kwargs.keys(): table = kwargs['table'] Ax = table[self.list_of_haloprops_needed[0]] Ay = table[self.list_of_haloprops_needed[1]] Az = table[self.list_of_haloprops_needed[2]] else: Ax = kwargs[self.list_of_haloprops_needed[0]] Ay = kwargs[self.list_of_haloprops_needed[1]] Az = kwargs[self.list_of_haloprops_needed[2]] # number of haloes N = len(Ax) # set prim_gal_axis orientation major_input_vectors = np.vstack((Ax, Ay, Az)).T theta_ma = self.misalignment_rvs(size=N) # rotate alignment vector by theta_ma ran_vecs = random_unit_vectors_3d(N) mrot = rotation_matrices_from_angles(theta_ma, ran_vecs) A_v = rotate_vector_collection(rotm, major_input_vectors) # randomly set secondary axis orientation B_v = random_perpendicular_directions(A_v) # the tertiary axis is determined C_v = vectors_normal_to_planes(A_v, B_v) # depending on the prim_gal_axis, assign correlated axes if self.prim_gal_axis == 'A': major_v = A_v inter_v = B_v minor_v = C_v elif self.prim_gal_axis == 'B': major_v = B_v inter_v = A_v minor_v = C_v elif self.prim_gal_axis == 'C': major_v = B_v inter_v = C_v minor_v = A_v else: msg = ('primary galaxy axis {0} is not recognized.'.format( self.prim_gal_axis)) raise ValueError(msg) if 'table' in kwargs.keys(): try: mask = (table['gal_type'] == self.gal_type) except KeyError: mask = np.array([True] * len(table)) msg = ( "Because `gal_type` not indicated in `table`.", "The orientation is being assigned for all galaxies in the `table`." ) print(msg) # check to see if the columns exist for key in list(self._galprop_dtypes_to_allocate.names): if key not in table.keys(): table[key] = 0.0 # add orientations to the galaxy table table['galaxy_axisA_x'][mask] = major_v[mask, 0] table['galaxy_axisA_y'][mask] = major_v[mask, 1] table['galaxy_axisA_z'][mask] = major_v[mask, 2] table['galaxy_axisB_x'][mask] = inter_v[mask, 0] table['galaxy_axisB_y'][mask] = inter_v[mask, 1] table['galaxy_axisB_z'][mask] = inter_v[mask, 2] table['galaxy_axisC_x'][mask] = minor_v[mask, 0] table['galaxy_axisC_y'][mask] = minor_v[mask, 1] table['galaxy_axisC_z'][mask] = minor_v[mask, 2] return table else: return major_v, inter_v, minor_v
def assign_satellite_orientation(self, **kwargs): r""" assign a a set of three orthoganl unit vectors indicating the orientation of the galaxies' major, intermediate, and minor axis Returns ======= major_aixs, intermediate_axis, minor_axis : numpy nd.arrays arrays of galaxies' axies """ if 'table' in kwargs.keys(): table = kwargs['table'] try: Lbox = kwargs['Lbox'] except KeyError: Lbox = self._Lbox else: try: Lbox = kwargs['Lbox'] except KeyError: Lbox = self._Lbox # calculate the radial vector between satellites and centrals major_input_vectors, r = self.get_radial_vector(Lbox=Lbox, **kwargs) # check for length 0 radial vectors mask = (r <= 0.0) | (~np.isfinite(r)) if np.sum(mask) > 0: major_input_vectors[mask, 0] = np.random.random((np.sum(mask))) major_input_vectors[mask, 1] = np.random.random((np.sum(mask))) major_input_vectors[mask, 2] = np.random.random((np.sum(mask))) msg = ( '{0} galaxies have a radial distance equal to zero (or infinity) from their host. ' 'These galaxies will be re-assigned random alignment vectors.'. format(int(np.sum(mask)))) warn(msg) # set prim_gal_axis orientation theta_ma = self.misalignment_rvs(size=N) # rotate alignment vector by theta_ma ran_vecs = random_unit_vectors_3d(N) mrot = rotation_matrices_from_angles(theta_ma, ran_vecs) A_v = rotate_vector_collection(rotm, major_input_vectors) # check for nan vectors mask = (~np.isfinite(np.sum(np.prod(A_v, axis=-1)))) if np.sum(mask) > 0: A_v[mask, 0] = np.random.random((np.sum(mask))) A_v[mask, 1] = np.random.random((np.sum(mask))) A_v[mask, 2] = np.random.random((np.sum(mask))) msg = ( '{0} correlated alignment axis(axes) were not found to be not finite. ' 'These will be re-assigned random vectors.'.format( int(np.sum(mask)))) warn(msg) # randomly set secondary axis orientation B_v = random_perpendicular_directions(A_v) # the tertiary axis is determined C_v = vectors_normal_to_planes(A_v, B_v) # use galaxy major axis as orientation axis major_v = A_v inter_v = B_v minor_v = C_v if 'table' in kwargs.keys(): try: mask = (table['gal_type'] == self.gal_type) except KeyError: mask = np.array([True] * len(table)) msg = ( "`gal_type` not indicated in `table`.", "The orientation is being assigned for all galaxies in the `table`." ) print(msg) # check to see if the columns exist for key in list(self._galprop_dtypes_to_allocate.names): if key not in table.keys(): table[key] = 0.0 # add orientations to the galaxy table table['galaxy_axisA_x'][mask] = major_v[mask, 0] table['galaxy_axisA_y'][mask] = major_v[mask, 1] table['galaxy_axisA_z'][mask] = major_v[mask, 2] table['galaxy_axisB_x'][mask] = inter_v[mask, 0] table['galaxy_axisB_y'][mask] = inter_v[mask, 1] table['galaxy_axisB_z'][mask] = inter_v[mask, 2] table['galaxy_axisC_x'][mask] = minor_v[mask, 0] table['galaxy_axisC_y'][mask] = minor_v[mask, 1] table['galaxy_axisC_z'][mask] = minor_v[mask, 2] return table else: return major_v, inter_v, minor_v