示例#1
0
def contour_pm_watershed(contour_pm,
                         sigma=2,
                         h=0,
                         tissue_mask=None,
                         padding_mask=None,
                         min_area=None,
                         max_area=None):
    if tissue_mask is None:
        tissue_mask = np.ones_like(contour_pm)
    padded = None
    if padding_mask is not None and np.any(padding_mask == 0):
        contour_pm, padded = crop_with_padding_mask(contour_pm,
                                                    padding_mask,
                                                    return_mask=True)
        tissue_mask = crop_with_padding_mask(tissue_mask, padding_mask)

    maxima = peak_local_max(extrema.h_maxima(ndi.gaussian_filter(
        np.invert(contour_pm), sigma=sigma),
                                             h=h),
                            indices=False,
                            footprint=np.ones((3, 3)))
    maxima = label(maxima).astype(np.int32)

    # Passing mask into the watershed function will exclude seeds outside
    # of the mask, which gives fewer and more accurate segments
    maxima = watershed(
        contour_pm, maxima, watershed_line=True, mask=tissue_mask) > 0

    if min_area is not None and max_area is not None:
        maxima = label(maxima, connectivity=1).astype(np.int32)
        areas = np.bincount(maxima.ravel())
        size_passed = np.arange(areas.size)[np.logical_and(
            areas > min_area, areas < max_area)]
        maxima *= np.isin(maxima, size_passed)
        np.greater(maxima, 0, out=maxima)

    if padded is None:
        return maxima.astype(np.bool)
    else:
        padded[padded == 1] = maxima.flatten()
        return padded.astype(np.bool)
示例#2
0
def locate_with_mask(img, padding_mask=None, min_peak_int=None):
    if padding_mask is not None and np.any(padding_mask == 0):
        img = rowit.crop_with_padding_mask(img, padding_mask)
    if min_peak_int is None:
        p = 95
    else:
        p = percentileofscore(img.flatten(), min_peak_int)
    with warnings.catch_warnings():
        warnings.filterwarnings('ignore',
                                message='Image contains no local maxima.')
        warnings.filterwarnings(
            'ignore', message='All local maxima were in the margins.')
        spot_table = locate(img,
                            3,
                            preprocess=False,
                            percentile=p,
                            separation=2)
    return spot_table