示例#1
0
def eval_one_epoch(sess, ops, pls, test_writer, more=False):
    TEST_DATASET = Dataset(NUM_POINT,
                           NUM_CHANNEL,
                           '/data/ssd/public/jlliu/Kitti/object',
                           'val',
                           is_training=True)
    test_produce_thread = Thread(target=TEST_DATASET.load, args=(False, ))
    test_produce_thread.start()

    global EPOCH_CNT
    is_training = False
    #is_training = True
    log_string(str(datetime.now()))
    log_string('---- EPOCH %03d EVALUATION ----' % (EPOCH_CNT))

    # To collect statistics
    total_correct = 0
    total_seen = 0
    total_tp = 0
    total_fp = 0
    total_fn = 0
    loss_sum = 0
    num_samples = 0
    iou2ds_sum = 0
    iou3ds_sum = 0
    total_nms = 0
    total_proposal_recall = 0

    while (True):
        batch_data, is_last_batch = TEST_DATASET.get_next_batch(BATCH_SIZE)

        feed_dict = {
            pls['pointclouds']:
            batch_data['pointcloud'],
            pls['img_inputs']:
            batch_data['images'],
            pls['calib']:
            batch_data['calib'],
            pls['seg_labels']:
            batch_data['seg_label'],
            pls['center_bin_x_labels']:
            batch_data['center_x_cls'],
            pls['center_bin_z_labels']:
            batch_data['center_z_cls'],
            pls['center_x_residuals_labels']:
            batch_data['center_x_res'],
            pls['center_y_residuals_labels']:
            batch_data['center_y_res'],
            pls['center_z_residuals_labels']:
            batch_data['center_z_res'],
            pls['heading_bin_labels']:
            batch_data['angle_cls'],
            pls['heading_residuals_labels']:
            batch_data['angle_res'],
            pls['size_class_labels']:
            batch_data['size_cls'],
            pls['size_residuals_labels']:
            batch_data['size_res'],
            pls['gt_box_of_point']:
            batch_data['gt_box_of_point'],
            pls['img_seg_softmax']:
            np.zeros((BATCH_SIZE, NUM_POINT, NUM_SEG_CLASSES)),
            pls['is_training_pl']:
            is_training,
        }

        if more:
            summary, step, loss_val, logits_val, iou2ds, iou3ds, proposal_boxes, nms_indices \
            = sess.run([
                ops['merged'], ops['step'], ops['loss'],
                ops['end_points']['foreground_logits'],
                ops['end_points']['iou2ds'], ops['end_points']['iou3ds'],
                ops['end_points']['proposal_boxes'], ops['end_points']['nms_indices']], feed_dict=feed_dict)
            #feed_dict=feed_dict)
            iou2ds_sum += np.sum(iou2ds)
            iou3ds_sum += np.sum(iou3ds)
            total_nms += len(iou2ds)
            # average on each frame
            proposal_recall = train_util.compute_proposal_recall(
                proposal_boxes, batch_data['gt_boxes'], nms_indices)
            total_proposal_recall += proposal_recall * BATCH_SIZE
        else:
            summary, step, loss_val, logits_val = sess.run([
                ops['merged'], ops['step'], ops['loss'],
                ops['end_points']['foreground_logits']
            ],
                                                           feed_dict=feed_dict)
        test_writer.add_summary(summary, step)

        # segmentation acc
        preds_val = np.argmax(logits_val, 2)
        correct = np.sum(preds_val == batch_data['seg_label'])
        tp = np.sum(
            np.logical_and(preds_val == batch_data['seg_label'],
                           batch_data['seg_label'] != 0))
        fp = np.sum(
            np.logical_and(preds_val != batch_data['seg_label'],
                           batch_data['seg_label'] == 0))
        fn = np.sum(
            np.logical_and(preds_val != batch_data['seg_label'],
                           batch_data['seg_label'] != 0))
        total_tp += tp
        total_fp += fp
        total_fn += fn
        total_correct += correct
        total_seen += NUM_POINT * BATCH_SIZE
        loss_sum += loss_val
        num_samples += BATCH_SIZE
        if is_last_batch:
            break

    log_string('eval mean loss: %f' % (loss_sum / float(num_samples)))
    log_string('eval segmentation accuracy: %f'% \
        (total_correct / float(total_seen)))
    if total_tp + total_fn > 0 and total_tp + total_fp > 0:
        log_string('eval segmentation recall: %f'% \
            (float(total_tp)/(total_tp+total_fn)))
        log_string('eval segmentation precision: %f'% \
            (float(total_tp)/(total_tp+total_fp)))
    if more:
        log_string('eval box IoU (ground/3D): %f / %f' % \
            (iou2ds_sum / float(total_nms), iou3ds_sum / float(total_nms)))
        log_string('eval proposal recall: %f' %
                   (float(total_proposal_recall) / num_samples))
    EPOCH_CNT += 1

    TEST_DATASET.stop_loading()
    test_produce_thread.join()

    return loss_sum / float(num_samples)
示例#2
0
def test(split, save_result=False):
    if save_result and not os.path.exists('./rcnn_data_' + split):
        os.mkdir('./rcnn_data_' + split)
    is_training = False
    #dataset = Dataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', split, is_training=is_training)
    dataset = Dataset(NUM_POINT, KITTI_PATH, split, is_training=is_training)
    # data loading threads
    produce_thread = Thread(target=dataset.load, args=(False, ))
    produce_thread.start()

    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            rpn_model = RPN(BATCH_SIZE,
                            NUM_POINT,
                            num_channel=4,
                            is_training=is_training)
            pls = rpn_model.placeholders
            end_points = rpn_model.end_points

            box_center, box_angle, box_size = rpn_model.box_encoder.tf_decode(
                end_points)
            box_center = box_center + end_points['fg_points_xyz']
            #box_center = tf.reshape(box_center, [BATCH_SIZE * NUM_FG_POINT,3])
            #box_angle = tf.reshape(box_angle, [BATCH_SIZE * NUM_FG_POINT])
            #box_size = tf.reshape(box_size, [BATCH_SIZE * NUM_FG_POINT,3])

            saver = tf.train.Saver()
        # Create a session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess = tf.Session(config=config)

        saver.restore(sess, FLAGS.model_path)

    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            #img_seg_net = ImgSegNet(BATCH_SIZE, NUM_POINT, num_channel=4, bn_decay=None, is_training=is_training)
            #seg_softmax = img_seg_net.get_seg_softmax()
            #saver1 = tf.train.Saver()
            img_seg_net = ImgSegNet(BATCH_SIZE, NUM_POINT)
            #img_seg_net.load_graph('/data/ssd/public/jlliu/models/research/deeplab/exp/frozen_inference_graph.pb')
            img_seg_net.load_graph(FLAGS.img_model_path)
            seg_softmax = img_seg_net.get_seg_softmax()
            full_seg = img_seg_net.get_semantic_seg()
        # Create another session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess1 = tf.Session(config=config)

        #saver1.restore(sess1, FLAGS.img_model_path)

    log_string(str(datetime.now()))

    # To collect statistics
    total_correct = 0
    total_seen = 0
    num_batches = 0
    tp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fn = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}

    proposal_boxes = []
    gt_boxes = []
    nms_indices = []

    while (True):
        batch_data, is_last_batch = dataset.get_next_batch(BATCH_SIZE,
                                                           need_id=True)

        start = datetime.now()

        feed_dict = {
            pls['pointclouds']: batch_data['pointcloud'],
            pls['img_inputs']: batch_data['images'],
            pls['calib']: batch_data['calib'],
            pls['seg_labels']: batch_data['seg_label'],
            pls['center_bin_x_labels']: batch_data['center_x_cls'],
            pls['center_bin_z_labels']: batch_data['center_z_cls'],
            pls['center_x_residuals_labels']: batch_data['center_x_res'],
            pls['center_y_residuals_labels']: batch_data['center_y_res'],
            pls['center_z_residuals_labels']: batch_data['center_z_res'],
            pls['heading_bin_labels']: batch_data['angle_cls'],
            pls['heading_residuals_labels']: batch_data['angle_res'],
            pls['size_class_labels']: batch_data['size_cls'],
            pls['size_residuals_labels']: batch_data['size_res'],
            pls['gt_box_of_point']: batch_data['gt_box_of_point'],
            pls['is_training_pl']: is_training,
        }

        # segmentaion with image
        seg_pls = img_seg_net.placeholders
        img_seg_logits, full_img_seg = sess1.run(
            [seg_softmax, full_seg],
            feed_dict={
                seg_pls['pointclouds']: batch_data['pointcloud'],
                seg_pls['img_inputs']: batch_data['images'],
                seg_pls['calib']: batch_data['calib'],
                seg_pls['seg_labels']: batch_data['seg_label'],
                #seg_pls['is_training_pl']: is_training
            })
        # convert to binary segmentation
        img_seg_binary = np.zeros((BATCH_SIZE, NUM_POINT, 2))
        img_seg_binary[..., 0] = img_seg_logits[..., 0]
        img_seg_binary[..., 1] = np.sum(img_seg_logits[..., 1:], axis=-1)
        img_seg_binary *= np.array([0, 1])  # weights
        feed_dict[pls['img_seg_softmax']] = img_seg_binary
        '''
        # label to one_hot
        targets = batch_data['seg_label']
        img_seg_logits = np.eye(NUM_SEG_CLASSES)[targets]
        #img_seg_logits *= np.array([2, 2, 2, 2]) # weights
        feed_dict[pls['img_seg_softmax']] = img_seg_logits
        '''

        logits_val, indices_val, centers_val, angles_val, sizes_val, corners_val, ind_val, scores_val \
        = sess.run([
            end_points['foreground_logits'], end_points['fg_point_indices'],
            box_center, box_angle, box_size, end_points['proposal_boxes'],
            end_points['nms_indices'], end_points['proposal_scores']], feed_dict=feed_dict)
        print('inference time: ', datetime.now() - start)
        # segmentation acc
        preds_val = np.argmax(logits_val, 2)
        num_batches += 1
        for c in ['Car', 'Pedestrian', 'Cyclist']:
            one_hot_class = g_type2onehotclass[c]
            tp[c] += np.sum(
                np.logical_and(preds_val == batch_data['seg_label'],
                               batch_data['seg_label'] == one_hot_class))
            fp[c] += np.sum(
                np.logical_and(preds_val != batch_data['seg_label'],
                               batch_data['seg_label'] != one_hot_class))
            fn[c] += np.sum(
                np.logical_and(preds_val != batch_data['seg_label'],
                               batch_data['seg_label'] == one_hot_class))
        # results
        for i in range(BATCH_SIZE):
            proposal_boxes.append(corners_val[i])
            gt_boxes.append(batch_data['gt_boxes'][i])
            nms_indices.append(ind_val[i])
            frame_data = {
                'frame_id': batch_data['ids'][i],
                'segmentation': preds_val[i],
                'centers': centers_val[i],
                'angles': angles_val[i],
                'sizes': sizes_val[i],
                'proposal_boxes': corners_val[i],
                'nms_indices': ind_val[i],
                'scores': scores_val[i],
                'pc_choices': batch_data['pc_choice'][i]
            }
            # save frame data
            if save_result:
                with open(
                        os.path.join('./rcnn_data_' + split,
                                     batch_data['ids'][i] + '.pkl'),
                        'wb') as fout:
                    pickle.dump(frame_data, fout)
                np.save(
                    os.path.join('./rcnn_data_' + split,
                                 batch_data['ids'][i] + '_seg.npy'),
                    full_img_seg[i])
        if is_last_batch:
            break

    log_string('saved prediction')

    dataset.stop_loading()
    produce_thread.join()
    '''
    all_indices = np.tile(np.arange(1024), (len(proposal_boxes),))
    iou2d, iou3d = compute_box3d_iou(proposal_boxes, point_gt_boxes, all_indices)
    print('IOU2d: ', np.mean(iou2d))
    print('IOU3d: ', np.mean(iou3d))
    '''
    if split in ['train', 'val']:
        recall = compute_proposal_recall(proposal_boxes, gt_boxes, nms_indices)
        print('Average recall: ', recall)
        print(tp, fp, fn)
        for c in ['Car', 'Pedestrian', 'Cyclist']:
            if (tp[c] + fn[c] == 0) or (tp[c] + fp[c]) == 0:
                continue
            print(c + ' segmentation recall: %f'% \
                (float(tp[c])/(tp[c]+fn[c])))
            print(c + ' segmentation precision: %f'% \
                (float(tp[c])/(tp[c]+fp[c])))
示例#3
0
def eval_one_epoch(sess, ops, pls, test_writer):
    TEST_DATASET = Dataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', 'val', is_training=True, train_img_seg=True)
    test_produce_thread = Thread(target=TEST_DATASET.load, args=(False,))
    test_produce_thread.start()

    global EPOCH_CNT
    is_training = False
    #is_training = True
    log_string(str(datetime.now()))
    log_string('---- EPOCH %03d EVALUATION ----'%(EPOCH_CNT))

    # To collect statistics
    total_correct = 0
    total_seen = 0
    total_tp = 0
    total_fp = 0
    total_fn = 0
    tp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fn = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    loss_sum = 0
    num_samples = 0

    while(True):
        batch_data, is_last_batch = TEST_DATASET.get_next_batch(BATCH_SIZE)

        feed_dict = {
            pls['pointclouds']: batch_data['pointcloud'],
            pls['img_inputs']: batch_data['images'],
            pls['calib']: batch_data['calib'],
            pls['seg_labels']: batch_data['seg_label'],
            pls['is_training_pl']: is_training
        }

        summary, step, loss_val, logits_val = sess.run([
            ops['merged'], ops['step'], ops['loss'],
            ops['end_points']['foreground_logits']], feed_dict=feed_dict)
        test_writer.add_summary(summary, step)

        # segmentation acc
        preds_val = np.argmax(logits_val, 2)
        correct = np.sum(preds_val == batch_data['seg_label'])
        for c in ['Car', 'Pedestrian', 'Cyclist']:
            one_hot_class = g_type2onehotclass[c]
            tp[c] += np.sum(np.logical_and(preds_val == batch_data['seg_label'], batch_data['seg_label'] == one_hot_class))
            fp[c] += np.sum(np.logical_and(preds_val != batch_data['seg_label'], batch_data['seg_label'] != one_hot_class))
            fn[c] += np.sum(np.logical_and(preds_val != batch_data['seg_label'], batch_data['seg_label'] == one_hot_class))
        total_tp += np.sum(np.logical_and(preds_val == batch_data['seg_label'], batch_data['seg_label'] != 0))
        total_fp += np.sum(np.logical_and(preds_val != batch_data['seg_label'], batch_data['seg_label'] == 0))
        total_fn += np.sum(np.logical_and(preds_val != batch_data['seg_label'], batch_data['seg_label'] != 0))
        total_correct += correct
        total_seen += NUM_POINT * BATCH_SIZE
        loss_sum += loss_val
        num_samples += BATCH_SIZE
        if is_last_batch:
            break

    log_string('eval mean loss: %f' % (loss_sum / float(num_samples)))
    log_string('eval segmentation accuracy: %f'% \
        (total_correct / float(total_seen)))
    if total_tp+total_fn > 0 and total_tp+total_fp > 0:
        log_string('eval segmentation recall: %f'% \
            (float(total_tp)/(total_tp+total_fn)))
        log_string('eval segmentation precision: %f'% \
            (float(total_tp)/(total_tp+total_fp)))
    for c in ['Car', 'Pedestrian', 'Cyclist']:
        if (tp[c]+fn[c] == 0) or (tp[c]+fp[c]) == 0:
            continue
        log_string(c + 'eval segmentation recall: %f'% \
            (float(tp[c])/(tp[c]+fn[c])))
        log_string(c + 'eval segmentation precision: %f'% \
            (float(tp[c])/(tp[c]+fp[c])))
    EPOCH_CNT += 1

    TEST_DATASET.stop_loading()
    test_produce_thread.join()

    return loss_sum / float(num_samples)
示例#4
0
    return learning_rate


def get_bn_decay(batch):
    bn_momentum = tf.train.exponential_decay(BN_INIT_DECAY,
                                             batch * BATCH_SIZE,
                                             BN_DECAY_DECAY_STEP,
                                             BN_DECAY_DECAY_RATE,
                                             staircase=True)
    bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
    return bn_decay


TRAIN_DATASET = Dataset(NUM_POINT,
                        NUM_CHANNEL,
                        '/data/ssd/public/jlliu/Kitti/object',
                        'train',
                        is_training=True,
                        use_aug_scene=True)
# data loading threads
train_produce_thread = Thread(target=TRAIN_DATASET.load, args=(True, ))
train_produce_thread.start()


def train():
    ''' Main function for training and simple evaluation. '''

    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            # is_training_pl = tf.placeholder(tf.bool, shape=())

            # Note the global_step=batch parameter to minimize.
示例#5
0
                        staircase=True)
    learing_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
    return learning_rate

def get_bn_decay(batch):
    bn_momentum = tf.train.exponential_decay(
                      BN_INIT_DECAY,
                      batch*BATCH_SIZE,
                      BN_DECAY_DECAY_STEP,
                      BN_DECAY_DECAY_RATE,
                      staircase=True)
    bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
    return bn_decay


TRAIN_DATASET = Dataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', 'train', is_training=True, train_img_seg=True)
# data loading threads
# FIXME: don't use data augmentation with image feature before calib matrix is adjust accordingly
train_produce_thread = Thread(target=TRAIN_DATASET.load, args=(True,))
train_produce_thread.start()

def train():
    ''' Main function for training and simple evaluation. '''

    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            # is_training_pl = tf.placeholder(tf.bool, shape=())

            # Note the global_step=batch parameter to minimize.
            # That tells the optimizer to increment the 'batch' parameter
            # for you every time it trains.
示例#6
0
    BATCH_SIZE = 1
    NUM_POINT = 16384
    with tf.Graph().as_default() as graph:
        with tf.device('/gpu:0'):
            seg_net = ImgSegNet(BATCH_SIZE, NUM_POINT)
            seg_net.load_graph(sys.argv[1])
            pts_softmax = seg_net.get_seg_softmax()
            semantic_seg = seg_net.get_semantic_seg()
            feat_map = seg_net.get_feature_map()
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess = tf.Session(config=config)
    TEST_DATASET = Dataset(NUM_POINT,
                           '/data/ssd/public/jlliu/Kitti/object',
                           'val',
                           is_training=True)
    #TEST_DATASET = Dataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', 'train', is_training=True)
    test_produce_thread = Thread(target=TEST_DATASET.load, args=(False, ))
    test_produce_thread.start()
    pls = seg_net.placeholders

    n = 0
    total_seen = 0
    tp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fn = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    g_type2onehotclass = {
        'NonObject': 0,
        'Car': 1,
        'Pedestrian': 2,
示例#7
0
parser.add_argument('--save_img_seg',
                    action='store_true',
                    help='If true, also save image segmentation result')
FLAGS = parser.parse_args()

# only batch_size=1 is supported now
BATCH_SIZE = 1
BATCH_SIZE_RCNN = 32
GPU_INDEX = FLAGS.gpu
NUM_POINT = FLAGS.num_point
NUM_POINT_RCNN = 512
NUM_CHANNEL = 4

RPN_DATASET = Dataset(NUM_POINT,
                      NUM_CHANNEL,
                      FLAGS.kitti_path,
                      FLAGS.split,
                      is_training=False,
                      use_aug_scene=False)
RCNN_DATASET = FrustumDataset(NUM_POINT_RCNN,
                              FLAGS.kitti_path,
                              BATCH_SIZE_RCNN,
                              FLAGS.split,
                              data_dir='./rcnn_data_' + FLAGS.split,
                              augmentX=1,
                              random_shift=False,
                              rotate_to_center=True,
                              random_flip=False,
                              use_gt_prop=False)


def print_flush(s):
示例#8
0
def test(split):
    is_training = False
    #dataset = Dataset(NUM_POINT, '/data/ssd/public/jlliu/Kitti/object', split, is_training=is_training)
    dataset = Dataset(NUM_POINT, KITTI_PATH, split, is_training=True)
    # data loading threads
    produce_thread = Thread(target=dataset.load, args=(False, ))
    produce_thread.start()

    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            rpn_model = RPN(BATCH_SIZE,
                            NUM_POINT,
                            num_channel=4,
                            is_training=is_training)
            pls = rpn_model.placeholders
            end_points = rpn_model.end_points

            box_center, box_angle, box_size = rpn_model.box_encoder.tf_decode(
                end_points)
            box_center = box_center + end_points['fg_points_xyz']
            #box_center = tf.reshape(box_center, [BATCH_SIZE * NUM_FG_POINT,3])
            #box_angle = tf.reshape(box_angle, [BATCH_SIZE * NUM_FG_POINT])
            #box_size = tf.reshape(box_size, [BATCH_SIZE * NUM_FG_POINT,3])

            saver = tf.train.Saver()
        # Create a session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess = tf.Session(config=config)

        saver.restore(sess, FLAGS.model_path)

    with tf.Graph().as_default():
        with tf.device('/gpu:0'):
            img_seg_net = ImgSegNet(BATCH_SIZE,
                                    NUM_POINT,
                                    num_channel=4,
                                    bn_decay=None,
                                    is_training=is_training)
            seg_softmax = img_seg_net.get_seg_softmax()
            #seg_net = ImgSegNet(BATCH_SIZE, NUM_POINT)
            #seg_net.load_graph('./frozen_inference_graph.pb')
            #seg_softmax = seg_net.get_seg_softmax()
            saver1 = tf.train.Saver()
        # Create another session
        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        config.allow_soft_placement = True
        config.log_device_placement = False
        sess1 = tf.Session(config=config)

        saver1.restore(sess1, './log_img/model.ckpt')

    log_string(str(datetime.now()))

    # To collect statistics
    total_correct = 0
    total_seen = 0
    num_batches = 0
    tp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fp = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}
    fn = {'Car': 0, 'Pedestrian': 0, 'Cyclist': 0}

    frame_ids = []
    fg_indices = []
    centers = []
    angles = []
    sizes = []
    proposal_boxes = []
    gt_boxes = []
    nms_indices = []
    scores = []
    segmentation = []  # point segmentation
    pc_choices = []  # point sampling indices

    while (True):
        batch_data, is_last_batch = dataset.get_next_batch(BATCH_SIZE,
                                                           need_id=True)

        start = datetime.now()

        feed_dict = {
            pls['pointclouds']: batch_data['pointcloud'],
            pls['img_inputs']: batch_data['images'],
            pls['calib']: batch_data['calib'],
            pls['seg_labels']: batch_data['seg_label'],
            pls['center_bin_x_labels']: batch_data['center_x_cls'],
            pls['center_bin_z_labels']: batch_data['center_z_cls'],
            pls['center_x_residuals_labels']: batch_data['center_x_res'],
            pls['center_y_residuals_labels']: batch_data['center_y_res'],
            pls['center_z_residuals_labels']: batch_data['center_z_res'],
            pls['heading_bin_labels']: batch_data['angle_cls'],
            pls['heading_residuals_labels']: batch_data['angle_res'],
            pls['size_class_labels']: batch_data['size_cls'],
            pls['size_residuals_labels']: batch_data['size_res'],
            pls['gt_box_of_point']: batch_data['gt_box_of_point'],
            pls['is_training_pl']: is_training,
        }

        # segmentaion with image
        seg_pls = img_seg_net.placeholders
        img_seg_logits = sess1.run(seg_softmax,
                                   feed_dict={
                                       seg_pls['pointclouds']:
                                       batch_data['pointcloud'],
                                       seg_pls['img_inputs']:
                                       batch_data['images'],
                                       seg_pls['calib']:
                                       batch_data['calib'],
                                       seg_pls['seg_labels']:
                                       batch_data['seg_label'],
                                       seg_pls['is_training_pl']:
                                       is_training
                                   })
        img_seg_logits *= np.array([0, 1])  # weights
        feed_dict[pls['img_seg_softmax']] = img_seg_logits
        '''
        # label to one_hot
        targets = batch_data['seg_label']
        img_seg_logits = np.eye(NUM_SEG_CLASSES)[targets]
        #img_seg_logits *= np.array([2, 2, 2, 2]) # weights
        feed_dict[pls['img_seg_softmax']] = img_seg_logits
        '''

        logits_val, indices_val, centers_val, angles_val, sizes_val, corners_val, ind_val, scores_val \
        = sess.run([
            end_points['foreground_logits'], end_points['fg_point_indices'],
            box_center, box_angle, box_size, end_points['proposal_boxes'],
            end_points['nms_indices'], end_points['proposal_scores']], feed_dict=feed_dict)
        print('inference time: ', datetime.now() - start)
        # segmentation acc
        preds_val = np.argmax(logits_val, 2)
        num_batches += 1
        for c in ['Car', 'Pedestrian', 'Cyclist']:
            one_hot_class = g_type2onehotclass[c]
            tp[c] += np.sum(
                np.logical_and(preds_val == batch_data['seg_label'],
                               batch_data['seg_label'] == one_hot_class))
            fp[c] += np.sum(
                np.logical_and(preds_val != batch_data['seg_label'],
                               batch_data['seg_label'] != one_hot_class))
            fn[c] += np.sum(
                np.logical_and(preds_val != batch_data['seg_label'],
                               batch_data['seg_label'] == one_hot_class))
        # results
        for i in range(BATCH_SIZE):
            frame_ids.append(batch_data['ids'][i])
            segmentation.append(preds_val[i])
            centers.append(centers_val[i])
            angles.append(angles_val[i])
            sizes.append(sizes_val[i])
            proposal_boxes.append(corners_val[i])
            nms_indices.append(ind_val[i])
            scores.append(scores_val[i])
            gt_boxes.append(batch_data['gt_boxes'][i])
            pc_choices.append(batch_data['pc_choice'][i])
        if is_last_batch:
            #if num_batches >= 500:
            break
    '''
    with open('rpn_out_{0}.pkl'.format(split),'wb') as fout:
        pickle.dump(frame_ids, fout)
        pickle.dump(segmentation, fout)
        pickle.dump(centers, fout)
        pickle.dump(angles, fout)
        pickle.dump(sizes, fout)
        pickle.dump(proposal_boxes, fout)
        pickle.dump(nms_indices, fout)
        pickle.dump(scores, fout)
        # pickle.dump(gt_boxes, fout)
        pickle.dump(pc_choices, fout)
    log_string('saved prediction')
    '''
    dataset.stop_loading()
    produce_thread.join()
    '''
    all_indices = np.tile(np.arange(1024), (len(proposal_boxes),))
    iou2d, iou3d = compute_box3d_iou(proposal_boxes, point_gt_boxes, all_indices)
    print('IOU2d: ', np.mean(iou2d))
    print('IOU3d: ', np.mean(iou3d))
    '''
    recall = compute_proposal_recall(proposal_boxes, gt_boxes, nms_indices)
    print('Average recall: ', recall)
    print(tp, fp, fn)
    for c in ['Car', 'Pedestrian', 'Cyclist']:
        if (tp[c] + fn[c] == 0) or (tp[c] + fp[c]) == 0:
            continue
        print(c + ' segmentation recall: %f'% \
            (float(tp[c])/(tp[c]+fn[c])))
        print(c + ' segmentation precision: %f'% \
            (float(tp[c])/(tp[c]+fp[c])))
示例#9
0
parser.add_argument('--img_seg_model', type=str, default='./frozen_inference_graph.pb', help='image segmentation model path')
parser.add_argument('--rcnn_model', type=str, default='log_rcnn/model.ckpt', help='rcnn model checkpoint file path [default: log/model.ckpt]')
parser.add_argument('--output', type=str, default='test_results', help='output file/folder name [default: test_results]')
parser.add_argument('--kitti_path', type=str, default='/data/ssd/public/jlliu/Kitti/object', help='Kitti root path')
parser.add_argument('--split', type=str, default='test', help='Data split to use [default: test]')
parser.add_argument('--dump_result', action='store_true', help='If true, also dump results to .pickle file')
FLAGS = parser.parse_args()

# only batch_size=1 is supported now
BATCH_SIZE = 1
BATCH_SIZE_RCNN = 32
GPU_INDEX = FLAGS.gpu
NUM_POINT = FLAGS.num_point
NUM_POINT_RCNN = 512

RPN_DATASET = Dataset(NUM_POINT, FLAGS.kitti_path, FLAGS.split, is_training=False)
RCNN_DATASET = FrustumDataset(NUM_POINT_RCNN, FLAGS.kitti_path, BATCH_SIZE_RCNN, FLAGS.split,
             data_dir='./rcnn_data_'+FLAGS.split,
             augmentX=1, random_shift=False, rotate_to_center=True, random_flip=False, use_gt_prop=False)

def print_flush(s):
    print(s)
    sys.stdout.flush()

def get_session_and_models():
    ''' Define model graph, load model parameters,
    create session and return session handle and tensors
    '''
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True