示例#1
0
    # net = net.myVGG16().to(device)
    # optimizer = optim.SGD(net.classifier.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    optimizer = optim.Adam(net.parameters())
    # net = net.myVGG16().to(device)
    # net = myvgg.VGG('VGG16').to(device)

    print('finish loading NN')

    # optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum)
    # optimizer = optim.Adam(net.parameters())
    # optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    print('finish loading optimizer')

    criterion = nn.CrossEntropyLoss()
    print('finish loading criterion')

    logger = logger.TrainLogger(out_dir, epochs, args.n)
    print('finish loading logger')

    r = run.NNRun(net, optimizer, criterion, logger, device, log_interval,
                  out_dir, prefix)

    print('start epoch loop')
    for epoch in range(1, epochs + 1):
        r.train(trainloader, epoch)
        if epoch % test_interval == 0:
            r.test(testloader)
            if logger.max_accuracy == logger.valid_accuracy[-1]:
                r.checkpoint(epoch)
            logger.save_loss()
示例#2
0
def main():
    args = easydict.EasyDict({
        "dataroot": "/mnt/gold/users/s18150/mywork/pytorch/data/gan",
        "save_dir": "./",
        "prefix": "feature",
        "workers": 8,
        "batch_size": 128,
        "image_size": 64,
        "nc": 3,
        "nz": 100,
        "ngf": 64,
        "ndf": 64,
        "epochs": 50,
        "lr": 0.0002,
        "beta1": 0.5,
        "gpu": 6,
        "use_cuda": True,
        "feature_matching": True,
        "mini_batch": False
    })

    manualSeed = 999
    random.seed(manualSeed)
    torch.manual_seed(manualSeed)
    device = torch.device(
        'cuda:{}'.format(args.gpu) if args.use_cuda else 'cpu')

    transform = transforms.Compose([
        transforms.Resize(args.image_size),
        transforms.CenterCrop(args.image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    dataset = dset.ImageFolder(root=args.dataroot, transform=transform)
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch_size,
                                             shuffle=True,
                                             num_workers=args.workers)

    # Generator用のモデルのインスタンス作成
    netG = net.Generator(args.nz, args.ngf, args.nc).to(device)
    # Generator用のモデルの初期値を設定
    netG.apply(net.weights_init)

    # Discriminator用のモデルのインスタンス作成
    netD = net.Discriminator(args.nc, args.ndf, device, args.batch_size,
                             args.mini_batch).to(device)
    # Discriminator用のモデルの初期値を設定
    netD.apply(net.weights_init)

    # BCE Loss classのインスタンスを作成
    criterionD = nn.BCELoss()

    if args.feature_matching is True:
        criterionG = nn.MSELoss(reduction='elementwise_mean')
    else:
        criterionG = nn.BCELoss()

    # Generatorに入力するノイズをバッチごとに作成 (バッチ数は64)
    # これはGeneratorの結果を描画するために使用する
    fixed_noise = torch.randn(64, args.nz, 1, 1, device=device)

    # 最適化関数のインスタンスを作成
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lr,
                            betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lr,
                            betas=(args.beta1, 0.999))

    r = run.NNRun(netD, netG, optimizerD, optimizerG, criterionD, criterionG,
                  device, fixed_noise, args)

    # 学習
    r.train(dataloader)
def main():
    args = easydict.EasyDict({
        # "dataroot": "/mnt/gold/users/s18150/mywork/pytorch/data/gan",
        "dataroot": "/mnt/gold/users/s18150/mywork/pytorch/data",
        "save_dir": "./",
        "prefix": "test",
        "workers": 8,
        "batch_size": 128,
        "image_size": 32,
        # "image_size": 28,
        # "nc": 3,
        "nc": 1,
        "nz": 100,
        "ngf": 32,
        "ndf": 32,
        # "ngf": 28,
        # "ndf": 64,
        "epochs": 1,
        "lr": 0.0002,
        "beta1": 0.5,
        "gpu": 7,
        "use_cuda": True,
        "feature_matching": True,
        "mini_batch": True,
        "iters": 50000,
        "label_batch_size": 100,
        "unlabel_batch_size": 100,
        "test_batch_size": 10,
        "out_dir": './result',
        "log_interval": 500,
        "label_num": 20
    })

    manualSeed = 999
    np.random.seed(manualSeed)
    random.seed(manualSeed)
    torch.manual_seed(manualSeed)
    device = torch.device(
        'cuda:{}'.format(args.gpu) if args.use_cuda else 'cpu')

    # transform = transforms.Compose([
    #     transforms.Resize(args.image_size),
    #     transforms.CenterCrop(args.image_size),
    #     transforms.ToTensor(),
    #     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    # ])
    #
    # dataset = dset.ImageFolder(root=args.dataroot, transform=transform)
    # dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size,
    #                                          shuffle=True, num_workers=args.workers)

    data_iterators = dataset.get_iters(root_path=args.dataroot,
                                       l_batch_size=args.label_batch_size,
                                       ul_batch_size=args.unlabel_batch_size,
                                       test_batch_size=args.test_batch_size,
                                       workers=args.workers,
                                       n_labeled=args.label_num)

    trainloader_label = data_iterators['labeled']
    trainloader_unlabel = data_iterators['unlabeled']
    testloader = data_iterators['test']

    # Generator用のモデルのインスタンス作成
    netG = net.Generator(args.nz, args.ngf, args.nc).to(device)
    # Generator用のモデルの初期値を設定
    netG.apply(net.weights_init)

    # Discriminator用のモデルのインスタンス作成
    netD = net.Discriminator(args.nc, args.ndf, device, args.batch_size,
                             args.mini_batch).to(device)
    # Discriminator用のモデルの初期値を設定
    netD.apply(net.weights_init)

    # BCE Loss classのインスタンスを作成
    criterionD = nn.CrossEntropyLoss()
    # criterionD = nn.BCELoss()

    if args.feature_matching is True:
        criterionG = nn.MSELoss(reduction='elementwise_mean')
    else:
        criterionG = nn.BCELoss()

    # Generatorに入力するノイズをバッチごとに作成 (バッチ数は64)
    # これはGeneratorの結果を描画するために使用する
    fixed_noise = torch.randn(64, args.nz, 1, 1, device=device)

    # 最適化関数のインスタンスを作成
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lr,
                            betas=(args.beta1, 0.999))
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lr,
                            betas=(args.beta1, 0.999))

    logger = TrainLogger(args)
    r = run.NNRun(netD, netG, optimizerD, optimizerG, criterionD, criterionG,
                  device, fixed_noise, logger, args)

    # 学習
    # r.train(dataloader)
    r.train(trainloader_label, trainloader_unlabel, testloader)