示例#1
0
def check_hyper(args):
    device, dtype = args.device, args.dtype
    add_args = {'num_classes': args.num_classes}
    if args.cpni:
        add_args = {
            'weight_noise': args.weight_noise,
            'act_noise_a': args.act_noise_a,
            'act_noise_b': args.act_noise_b,
            'rank': args.noise_rank,
            'num_classes': args.num_classes
        }

    print("Optimizinig over noise and number of Monte-Carlo iterations")
    results = [[] for iterations in args.iterations_list]
    results_adv = [[] for iterations in args.iterations_list]
    max_adv_accuracy = -1
    max_accuracy = -1
    max_accuracy_noise = 0
    max_accuracy_iteration = 0
    for iterations_idx, iterations in enumerate(args.iterations_list):
        for noise in args.noise_list:
            print("starting run attack with noise=" + str(noise) +
                  " and iterations=" + str(iterations))

            smoothing_args = {
                'noise_sd': noise,
                'm_test': iterations,
                'm_train': args.m_train
            }
            # smoothing_args = {'noise_sd': noise, 'm_test': iterations, 'm_train': args.m_train, 'logits': args.logits}
            model = args.net(width=args.width, **smoothing_args, **add_args)
            if args.smootht:
                smoothing_args_t = smoothing_args
            else:
                smoothing_args_t = {'noise_sd': 0, 'm_test': 1, 'm_train': 1}
            modelt = args.net(width=args.width, **smoothing_args, **add_args)
            # if args.noise_sd != 0.0:
            # model = SmoothModel(base_model=model, noise_sd=noise, m_train=args.m_train, m_test=iterations)

            num_parameters = sum([l.nelement() for l in model.parameters()])
            print(model)
            print("Number of parameters {}".format(num_parameters))

            train_loader, val_loader, _ = args.get_loaders(
                args.dataset, args.data, args.batch_size, args.batch_size,
                args.workers)
            # define loss function (criterion) and optimizer
            criterion = torch.nn.CrossEntropyLoss()

            model, modelt, criterion = model.to(
                device=device, dtype=dtype), modelt.to(
                    device=device, dtype=dtype), criterion.to(device=device,
                                                              dtype=dtype)

            if args.opt == 'sgd':
                optimizer = torch.optim.SGD(model.parameters(),
                                            args.learning_rate,
                                            momentum=args.momentum,
                                            weight_decay=args.decay,
                                            nesterov=args.nesterov_momentum)
            elif args.opt == 'adam':
                optimizer = torch.optim.Adam(model.parameters(),
                                             args.learning_rate,
                                             weight_decay=args.decay)
            else:
                raise ValueError('Wrong optimzier!')

            scheduler = MultiStepLR(optimizer,
                                    milestones=args.schedule,
                                    gamma=args.gamma)

            best_test = 0

            # optionally resume from a checkpoint
            data = None
            if args.resume:
                if os.path.isfile(args.resume):
                    print("=> loading checkpoint '{}'".format(args.resume))
                    checkpoint = torch.load(args.resume, map_location=device)
                    args.start_epoch = checkpoint['epoch'] - 1
                    best_test = checkpoint['best_prec1']
                    model.load_state_dict(checkpoint['state_dict'])
                    optimizer.load_state_dict(checkpoint['optimizer'])
                    print("=> loaded checkpoint '{}' (epoch {})".format(
                        args.resume, checkpoint['epoch']))
                elif os.path.isdir(args.resume):
                    checkpoint_path = os.path.join(args.resume,
                                                   'checkpoint.pth.tar')
                    csv_path = os.path.join(args.resume, 'results.csv')
                    print("=> loading checkpoint '{}'".format(checkpoint_path))
                    checkpoint = torch.load(checkpoint_path,
                                            map_location=device)
                    args.start_epoch = checkpoint['epoch'] - 1
                    best_test = checkpoint['best_prec1']
                    model.load_state_dict(checkpoint['state_dict'])
                    optimizer.load_state_dict(checkpoint['optimizer'])
                    print("=> loaded checkpoint '{}' (epoch {})".format(
                        checkpoint_path, checkpoint['epoch']))
                    data = []
                    with open(csv_path) as csvfile:
                        reader = csv.DictReader(csvfile)
                        for row in reader:
                            data.append(row)
                else:
                    print("=> no checkpoint found at '{}'".format(args.resume))

            if args.trans:
                if os.path.isfile(args.trans):
                    print("=> loading checkpoint '{}'".format(args.trans))
                    checkpoint = torch.load(args.trans, map_location=device)
                    args.start_epoch = checkpoint['epoch'] - 1
                    best_test = checkpoint['best_prec1']
                    modelt.load_state_dict(checkpoint['state_dict'])
                    optimizer.load_state_dict(checkpoint['optimizer'])
                    print("=> loaded checkpoint '{}' (epoch {})".format(
                        args.trans, checkpoint['epoch']))
                elif os.path.isdir(args.trans):
                    checkpoint_path = os.path.join(args.trans,
                                                   'checkpoint.pth.tar')
                    csv_path = os.path.join(args.trans, 'results.csv')
                    print("=> loading checkpoint '{}'".format(checkpoint_path))
                    checkpoint = torch.load(checkpoint_path,
                                            map_location=device)
                    args.start_epoch = checkpoint['epoch'] - 1
                    best_test = checkpoint['best_prec1']
                    modelt.load_state_dict(checkpoint['state_dict'])
                    optimizer.load_state_dict(checkpoint['optimizer'])
                    print("=> loaded checkpoint '{}' (epoch {})".format(
                        checkpoint_path, checkpoint['epoch']))
                    data = []
                    with open(csv_path) as csvfile:
                        reader = csv.DictReader(csvfile)
                        for row in reader:
                            data.append(row)
                else:
                    print("=> no checkpoint found at '{}'".format(args.trans))

            normalize = {
                'mean': np.array([0.491, 0.482, 0.447]),
                'std': np.array([0.247, 0.243, 0.262])
            }
            if args.gen_adv:
                adv_s = gen_attack(model, train_loader, criterion, args.attack,
                                   args.eps, normalize, device, dtype)
                torch.save(adv_s,
                           os.path.join(args.save_path, 'adv_samples.tar'))
            else:
                for layer in model.modules():
                    from layers import NoisedConv2D, NoisedLinear, NoisedConv2DColored
                    if isinstance(layer, NoisedConv2D) or isinstance(
                            layer, NoisedLinear):
                        print("Mean of alphas is {}".format(
                            torch.mean(layer.alpha)))
                    if isinstance(layer, NoisedConv2DColored):
                        try:
                            print(
                                "Mean of alphas_diag_w is {}+-{} ({}) ".format(
                                    torch.mean(torch.abs(layer.alphad_w)),
                                    torch.std(torch.abs(layer.alphad_w)),
                                    torch.max(torch.abs(layer.alphad_w))))
                            print("Mean of alphas_factor_w is {}+-{} ({}) ".
                                  format(torch.mean(torch.abs(layer.alphaf_w)),
                                         torch.std(layer.alphaf_w),
                                         torch.max(torch.abs(layer.alphaf_w))))
                        except:
                            pass
                        try:
                            print("Mean of alphas_diag_a is {}+-{} ({})  ".
                                  format(torch.mean(torch.abs(layer.alphad_i)),
                                         torch.std(torch.abs(layer.alphad_i)),
                                         torch.max(torch.abs(layer.alphad_i))))
                            print("Mean of alphas_factor_a is {}+-{} ({}) ".
                                  format(torch.mean(torch.abs(layer.alphaf_i)),
                                         torch.std(layer.alphaf_i),
                                         torch.max(torch.abs(layer.alphaf_i))))
                        except:
                            pass
                if args.attack == Transfer:
                    a = smoothing_args
                    a.update(add_args)
                    a['width'] = args.width
                    if args.tepgd:
                        att_object = args.attack(model, criterion, modelt,
                                                 EPGD_FGSMk)
                    else:
                        att_object = args.attack(model, criterion, modelt,
                                                 PGD_FGSMk)
                else:
                    att_object = args.attack(model, criterion)
                test_loss, accuracy1, accuracy5, test_loss_a, accuracy1_a, accuracy5_a = \
                    attack(model, val_loader, criterion, att_object, args.eps, normalize, device, dtype)
                results[iterations_idx].append(accuracy1)
                results_adv[iterations_idx].append(accuracy1_a)
                print("finished run attack with noise=" + str(noise) +
                      " and iterations=" + str(iterations))
                print("args.iterations_list")
                print(args.iterations_list)
                print("args.noise_list")
                print(args.noise_list)
                for idx in range(iterations_idx + 1):
                    current_argmax = np.argmax(results_adv[idx])
                    # print("current_argmax")
                    # print(current_argmax)
                    # current_argmax = int(current_argmax)
                    current_max_adv_accuracy = results_adv[idx][current_argmax]
                    current_max_accuracy = results[idx][current_argmax]
                    current_max_accuracy_noise = args.noise_list[
                        current_argmax]
                    current_iteration = args.iterations_list[idx]
                    if current_max_adv_accuracy > max_adv_accuracy:
                        max_adv_accuracy = current_max_adv_accuracy
                        max_accuracy = current_max_accuracy
                        max_accuracy_noise = current_max_accuracy_noise
                        max_accuracy_iteration = current_iteration
                    # print("results for iterations_num =" + str(current_iteration))
                    print("results[iterations_num=" + str(current_iteration) +
                          "]")
                    print(results[idx])
                    print("results_adv[iterations_num=" +
                          str(current_iteration) + "]")
                    print(results_adv[idx])
                    print(
                        "best result for this iterations_num is adverserial_accuracy="
                        + str(current_max_adv_accuracy) + " accuracy=" +
                        str(current_max_accuracy) +
                        " and was recived for iterations_num=" +
                        str(current_iteration) + " and noise=" +
                        str(current_max_accuracy_noise))
                print("best result so far is adverserial_accuracy=" +
                      str(max_adv_accuracy) + " accuracy=" +
                      str(max_accuracy) +
                      " and was recived for iterations_num=" +
                      str(max_accuracy_iteration) + " and noise=" +
                      str(max_accuracy_noise))

    return max_accuracy_iteration, max_accuracy_noise, max_adv_accuracy, max_accuracy
示例#2
0
def main():
    args = get_args()
    device, dtype = args.device, args.dtype
    noise_sd = args.noise_sd
    m_test = args.m_test
    m_train = args.m_train

    if args.check_hyper_params:
        max_accuracy_iteration, max_accuracy_noise, max_adv_accuracy, max_accuracy = check_hyper(
            args)
        noise_sd = max_accuracy_noise
        m_test = max_accuracy_iteration

    if args.optimize_hyper_params:
        max_accuracy_iteration, max_accuracy_noise, max_adv_accuracy, max_accuracy = optimize_hyper(
            args)
        noise_sd = max_accuracy_noise
        m_test = max_accuracy_iteration

    add_args = {'num_classes': args.num_classes}
    if args.cpni:
        add_args = {
            'weight_noise': args.weight_noise,
            'act_noise_a': args.act_noise_a,
            'act_noise_b': args.act_noise_b,
            'rank': args.noise_rank,
            'num_classes': args.num_classes
        }
    if args.dataset == torchvision.datasets.ImageNet:
        add_args['pretrained'] = True
    else:
        add_args['width'] = args.width
    add_args['num_classes'] = args.num_classes
    smoothing_args = {}
    if args.smoothing:
        # smoothing_args = {'noise_sd': noise_sd, 'm_test': m_test, 'm_train': m_train, 'logits': args.logits}
        smoothing_args = {
            'noise_sd': noise_sd,
            'm_test': m_test,
            'm_train': m_train
        }
    model = args.net(**smoothing_args, **add_args)
    modelt = args.net(**smoothing_args, **add_args)

    num_parameters = sum([l.nelement() for l in model.parameters()])
    print(model)
    print("Number of parameters {}".format(num_parameters))

    train_loader, val_loader, _ = args.get_loaders(args.dataset, args.data,
                                                   args.batch_size,
                                                   args.batch_size,
                                                   args.workers)
    # define loss function (criterion) and optimizer
    criterion = torch.nn.CrossEntropyLoss()

    model, modelt, criterion = model.to(device=device, dtype=dtype), modelt.to(
        device=device, dtype=dtype), criterion.to(device=device, dtype=dtype)

    if args.opt == 'sgd':
        optimizer = torch.optim.SGD(model.parameters(),
                                    args.learning_rate,
                                    momentum=args.momentum,
                                    weight_decay=args.decay,
                                    nesterov=args.nesterov_momentum)
    elif args.opt == 'adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     args.learning_rate,
                                     weight_decay=args.decay)
    else:
        raise ValueError('Wrong optimzier!')

    scheduler = MultiStepLR(optimizer,
                            milestones=args.schedule,
                            gamma=args.gamma)

    best_test = 0

    # optionally resume from a checkpoint
    data = None
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume, map_location=device)
            args.start_epoch = checkpoint['epoch'] - 1
            best_test = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        elif os.path.isdir(args.resume):
            checkpoint_path = os.path.join(args.resume, 'checkpoint.pth.tar')
            csv_path = os.path.join(args.resume, 'results.csv')
            print("=> loading checkpoint '{}'".format(checkpoint_path))
            checkpoint = torch.load(checkpoint_path, map_location=device)
            args.start_epoch = checkpoint['epoch'] - 1
            best_test = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                checkpoint_path, checkpoint['epoch']))
            data = []
            with open(csv_path) as csvfile:
                reader = csv.DictReader(csvfile)
                for row in reader:
                    data.append(row)
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

        if args.trans:
            if os.path.isfile(args.trans):
                print("=> loading checkpoint '{}'".format(args.trans))
                checkpoint = torch.load(args.trans, map_location=device)
                args.start_epoch = checkpoint['epoch'] - 1
                best_test = checkpoint['best_prec1']
                modelt.load_state_dict(checkpoint['state_dict'])
                optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})".format(
                    args.trans, checkpoint['epoch']))
        elif os.path.isdir(args.trans):
            checkpoint_path = os.path.join(args.trans, 'checkpoint.pth.tar')
            csv_path = os.path.join(args.trans, 'results.csv')
            print("=> loading checkpoint '{}'".format(checkpoint_path))
            checkpoint = torch.load(checkpoint_path, map_location=device)
            args.start_epoch = checkpoint['epoch'] - 1
            best_test = checkpoint['best_prec1']
            modelt.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                checkpoint_path, checkpoint['epoch']))
            data = []
            with open(csv_path) as csvfile:
                reader = csv.DictReader(csvfile)
                for row in reader:
                    data.append(row)
        else:
            print("=> no checkpoint found at '{}'".format(args.trans))
    normalize = {
        'mean': np.array([0.491, 0.482, 0.447]),
        'std': np.array([0.247, 0.243, 0.262])
    }
    if args.gen_adv:
        adv_s = gen_attack(model, train_loader, criterion, args.attack,
                           args.eps, normalize, device, dtype)
        torch.save(adv_s, os.path.join(args.save_path, 'adv_samples.tar'))
    else:
        for layer in model.modules():
            from layers import NoisedConv2D, NoisedLinear, NoisedConv2DColored
            if isinstance(layer, NoisedConv2D) or isinstance(
                    layer, NoisedLinear):
                print("Mean of alphas is {}".format(torch.mean(layer.alpha)))
            if isinstance(layer, NoisedConv2DColored):
                try:
                    print("Mean of alphas_diag_w is {}+-{} ({}) ".format(
                        torch.mean(torch.abs(layer.alphad_w)),
                        torch.std(torch.abs(layer.alphad_w)),
                        torch.max(torch.abs(layer.alphad_w))))
                    print("Mean of alphas_factor_w is {}+-{} ({}) ".format(
                        torch.mean(torch.abs(layer.alphaf_w)),
                        torch.std(layer.alphaf_w),
                        torch.max(torch.abs(layer.alphaf_w))))
                except:
                    pass
                try:
                    print("Mean of alphas_diag_a is {}+-{} ({})  ".format(
                        torch.mean(torch.abs(layer.alphad_i)),
                        torch.std(torch.abs(layer.alphad_i)),
                        torch.max(torch.abs(layer.alphad_i))))
                    print("Mean of alphas_factor_a is {}+-{} ({}) ".format(
                        torch.mean(torch.abs(layer.alphaf_i)),
                        torch.std(layer.alphaf_i),
                        torch.max(torch.abs(layer.alphaf_i))))
                except:
                    pass

        if args.attack == Transfer:
            a = smoothing_args
            a.update(add_args)
            a['width'] = args.width
            att_object = args.attack(model, criterion, modelt, PGD_FGSMk)
        else:
            att_object = args.attack(model, criterion)
        attack(model, val_loader, criterion, att_object, args.eps, normalize,
               device, dtype)
示例#3
0
def optimize_hyper(args):
    device, dtype = args.device, args.dtype
    add_args = {'num_classes': args.num_classes}
    if args.cpni:
        add_args = {
            'weight_noise': args.weight_noise,
            'act_noise_a': args.act_noise_a,
            'act_noise_b': args.act_noise_b,
            'rank': args.noise_rank,
            'num_classes': args.num_classes
        }

    print("Optimizinig over noise and number of Monte-Carlo iterations")
    results = [[] for iterations in args.iterations_list]
    results_adv = [[] for iterations in args.iterations_list]
    noise_list = [[] for iterations in args.iterations_list]
    max_adv_accuracy = -1
    max_accuracy = -1
    max_accuracy_noise = 0
    max_accuracy_iteration = 0

    for iterations_idx, iterations in enumerate(args.iterations_list):

        # smoothing_args = {'noise_sd': args.noise_sd, 'm_test': iterations, 'm_train': args.m_train,
        #                   'logits': args.logits, 'learn_noise': True}
        smoothing_args = {
            'noise_sd': args.noise_sd,
            'm_test': iterations,
            'm_train': args.m_train,
            'learn_noise': True
        }

        model = args.net(width=args.width, **smoothing_args, **add_args)

        num_parameters = sum([l.nelement() for l in model.parameters()])
        print(model)
        print("Number of parameters {}".format(num_parameters))

        train_loader, val_loader, _ = args.get_loaders(args.dataset, args.data,
                                                       args.batch_size,
                                                       args.batch_size,
                                                       args.workers)
        # define loss function (criterion) and optimizer
        criterion = torch.nn.CrossEntropyLoss()

        model, criterion = model.to(device=device,
                                    dtype=dtype), criterion.to(device=device,
                                                               dtype=dtype)
        model_noise_parameter = [
            # {'params': model.parameters()},
            {
                'params': [model.noise_sd]
            }
        ]
        if args.opt == 'sgd':
            optimizer = torch.optim.SGD(model_noise_parameter,
                                        args.learning_rate,
                                        momentum=args.momentum,
                                        weight_decay=args.decay,
                                        nesterov=args.nesterov_momentum)
        elif args.opt == 'adam':
            optimizer = torch.optim.Adam(model_noise_parameter,
                                         args.learning_rate,
                                         weight_decay=args.decay)
        else:
            raise ValueError('Wrong optimzier!')

        scheduler = MultiStepLR(optimizer,
                                milestones=args.schedule,
                                gamma=args.gamma)

        best_test = 0

        # optionally resume from a checkpoint
        if args.resume:
            if os.path.isfile(args.resume):
                print("=> loading checkpoint '{}'".format(args.resume))
                checkpoint = torch.load(args.resume, map_location=device)
                args.start_epoch = checkpoint['epoch'] - 1
                best_test = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
                # optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})".format(
                    args.resume, checkpoint['epoch']))
            elif os.path.isdir(args.resume):
                checkpoint_path = os.path.join(args.resume,
                                               'checkpoint.pth.tar')
                csv_path = os.path.join(args.resume, 'results.csv')
                print("=> loading checkpoint '{}'".format(checkpoint_path))
                checkpoint = torch.load(checkpoint_path, map_location=device)
                args.start_epoch = checkpoint['epoch'] - 1
                best_test = checkpoint['best_prec1']
                model.load_state_dict(checkpoint['state_dict'])
                # optimizer.load_state_dict(checkpoint['optimizer'])
                print("=> loaded checkpoint '{}' (epoch {})".format(
                    checkpoint_path, checkpoint['epoch']))
                data = []
                with open(csv_path) as csvfile:
                    reader = csv.DictReader(csvfile)
                    for row in reader:
                        data.append(row)
            else:
                print("=> no checkpoint found at '{}'".format(args.resume))

        normalize = {
            'mean': np.array([0.491, 0.482, 0.447]),
            'std': np.array([0.247, 0.243, 0.262])
        }

        att_object = args.attack(model, criterion)
        for epoch in trange(args.start_epoch, args.epochs + 1):
            adv_train(model, train_loader, 0, optimizer, criterion, device,
                      dtype, args.batch_size, args.log_interval, args.attack,
                      args.eps, 0.5, normalize)

            test_loss, accuracy1, accuracy5, test_loss_a, accuracy1_a, accuracy5_a = attack(
                model, val_loader, criterion, att_object, args.eps, normalize,
                device, dtype)
            results[iterations_idx].append(accuracy1)
            results_adv[iterations_idx].append(accuracy1_a)
            noise = model.noise_sd.item()
            noise_list[iterations_idx].append(noise)
            print("finished run attack with noise=" + str(noise) +
                  " and iterations=" + str(iterations))
            print("args.iterations_list")
            print(args.iterations_list)

            for idx in range(iterations_idx + 1):
                current_argmax = np.argmax(results_adv[idx])
                # print("current_argmax")
                # print(current_argmax)
                # current_argmax = int(current_argmax)
                current_max_adv_accuracy = results_adv[idx][current_argmax]
                current_max_accuracy = results[idx][current_argmax]
                current_max_accuracy_noise = noise_list[idx][current_argmax]
                current_iteration = args.iterations_list[idx]
                if current_max_adv_accuracy > max_adv_accuracy:
                    max_adv_accuracy = current_max_adv_accuracy
                    max_accuracy = current_max_accuracy
                    max_accuracy_noise = current_max_accuracy_noise
                    max_accuracy_iteration = current_iteration
                # print("results for iterations_num =" + str(current_iteration))
                print("noise_list[iterations_num=" + str(current_iteration) +
                      "]")
                print(noise_list[idx])
                print("results[iterations_num=" + str(current_iteration) + "]")
                print(results[idx])
                print("results_adv[iterations_num=" + str(current_iteration) +
                      "]")
                print(results_adv[idx])
                print(
                    "best result for this iterations_num is adverserial_accuracy="
                    + str(current_max_adv_accuracy) + " accuracy=" +
                    str(current_max_accuracy) +
                    " and was recived for iterations_num=" +
                    str(current_iteration) + " and noise=" +
                    str(current_max_accuracy_noise))
            print("best result so far is adverserial_accuracy=" +
                  str(max_adv_accuracy) + " accuracy=" + str(max_accuracy) +
                  " and was recived for iterations_num=" +
                  str(max_accuracy_iteration) + " and noise=" +
                  str(max_accuracy_noise))

            scheduler.step()

    return max_accuracy_iteration, max_accuracy_noise, max_adv_accuracy, max_accuracy