settings.online = True nodes = 200 lr = 0.003#231262326395 settings.nodes = nodes settings.batch_size = 128 settings.lr = lr settings.loss = 'mae' settings.stateful=False settings.lookback = 50 settings.lookback_as_features=False settings.feature_count = 3 settings.predictionStep = 5 settings.season = 48 settings.adam_eps = 0.001 settings.retrain_interval = 1000 settings.reset_on_retrain = False settings.refeed_on_retrain = True settings.cutoff_normalize = True settings.use_dropout = True settings.nTrain = 5000 settings.ignore_for_error = [5500,10000] settings.normalization_type = 'default' settings.implementation = 'keras' settings.rnn_type = 'lstm' settings.use_binary = False settings.limit_to = None settings.finalize() mase = run_gru(settings) print mase
except: settings.lookback = None settings.nodes = int(argv[3]) try: settings.batch_size = int(argv[9]) except: settings.batch_size = None settings.retrain_interval = int(argv[4]) settings.lookback_as_features = True if argv[10] == "True" else False settings.feature_count = int(argv[11]) settings.lr = float(argv[5]) settings.predictionStep = 5 settings.season = 48 settings.ignore_for_error = [5500] settings.nTrain = 5000 settings.limit_to = 7500 # if not settings.normalization_type = 'default' settings.implementation = 'keras' settings.rnn_type = argv[12] settings.use_binary = False settings.stateful = False settings.adam_eps = float(argv[13]) settings.refeed_on_retrain = True settings.reset_on_retrain = False settings.use_dropout = False settings.finalize() mase = run_gru(settings) print str(mase)