示例#1
0
def evaluate(datasource,
             estimator_string,
             select,
             result_table,
             feature_columns,
             feature_column_names,
             feature_metas={},
             label_meta={},
             model_params={},
             validation_metrics=["Accuracy"],
             save="",
             batch_size=1,
             validation_steps=None,
             verbose=0,
             pai_table=""):
    FLAGS = define_tf_flags()
    set_oss_environs(FLAGS)

    estimator_cls = import_model(estimator_string)
    is_estimator = is_tf_estimator(estimator_cls)
    set_log_level(verbose, is_estimator)

    is_pai = True if pai_table else False
    eval_dataset = get_dataset_fn(select,
                                  datasource,
                                  feature_column_names,
                                  feature_metas,
                                  label_meta,
                                  is_pai=is_pai,
                                  pai_table=pai_table,
                                  batch_size=batch_size)

    model_params.update(feature_columns)
    pop_optimizer_and_loss(model_params)
    if is_estimator:
        with open("exported_path", "r") as fid:
            exported_path = str(fid.read())

        model_params["warm_start_from"] = exported_path
        estimator = estimator_cls(**model_params)
        result_metrics = estimator_evaluate(estimator, eval_dataset,
                                            validation_metrics)
    else:
        keras_model = init_model_with_feature_column(estimator_cls,
                                                     model_params)
        keras_model_pkg = sys.modules[estimator_cls.__module__]
        result_metrics = keras_evaluate(keras_model, eval_dataset, save,
                                        keras_model_pkg, validation_metrics)

    if result_table:
        metric_name_list = ["loss"] + validation_metrics
        if is_pai:
            conn = PaiIOConnection.from_table(result_table)
        else:
            conn = db.connect_with_data_source(datasource)
        write_result_metrics(result_metrics, metric_name_list, result_table,
                             conn)
        conn.close()
示例#2
0
def pred(datasource,
         estimator_string,
         select,
         result_table,
         feature_columns,
         feature_column_names,
         feature_column_names_map,
         train_label_name,
         result_col_name,
         feature_metas={},
         model_params={},
         pred_params={},
         save="",
         batch_size=1,
         pai_table=""):
    estimator = import_model(estimator_string)
    model_params.update(feature_columns)
    is_estimator = is_tf_estimator(estimator)

    if pai_table != "":
        conn = PaiIOConnection.from_table(pai_table)
        selected_cols = db.selected_cols(conn, None)
        predict_generator = db.db_generator(conn, None)
    else:
        conn = db.connect_with_data_source(datasource)
        selected_cols = db.selected_cols(conn, select)
        predict_generator = db.db_generator(conn, select)

    pop_optimizer_and_loss(model_params)

    if pred_params is None:
        extra_result_cols = []
    else:
        extra_result_cols = pred_params.get("extra_outputs", "")
        extra_result_cols = [
            c.strip() for c in extra_result_cols.split(",") if c.strip()
        ]

    if not is_estimator:
        if not issubclass(estimator, tf.keras.Model):
            # functional model need field_metas parameter
            model_params["field_metas"] = feature_metas
        print("Start predicting using keras model...")
        keras_predict(estimator, model_params, save, result_table,
                      feature_column_names, feature_metas, train_label_name,
                      result_col_name, conn, predict_generator, selected_cols,
                      extra_result_cols)
    else:
        # TODO(sneaxiy): support extra_result_cols for estimator
        model_params['model_dir'] = save
        print("Start predicting using estimator model...")
        estimator_predict(result_table, feature_column_names, feature_metas,
                          train_label_name, result_col_name, conn,
                          predict_generator, selected_cols)

    print("Done predicting. Predict table : %s" % result_table)
示例#3
0
def _explain(datasource,
             estimator_string,
             select,
             feature_columns,
             feature_column_names,
             feature_metas={},
             label_meta={},
             model_params={},
             save="",
             pai_table="",
             plot_type='bar',
             result_table="",
             oss_dest=None,
             oss_ak=None,
             oss_sk=None,
             oss_endpoint=None,
             oss_bucket_name=None):
    estimator_cls = import_model(estimator_string)
    FLAGS = tf.app.flags.FLAGS
    model_params["model_dir"] = FLAGS.checkpointDir
    model_params.update(feature_columns)
    pop_optimizer_and_loss(model_params)

    def _input_fn():
        dataset = input_fn("",
                           datasource,
                           feature_column_names,
                           feature_metas,
                           label_meta,
                           is_pai=True,
                           pai_table=pai_table)
        return dataset.batch(1).cache()

    estimator = init_model_with_feature_column(estimator_cls, model_params)
    conn = PaiIOConnection.from_table(result_table) if result_table else None
    if estimator_cls in (tf.estimator.BoostedTreesClassifier,
                         tf.estimator.BoostedTreesRegressor):
        explain_boosted_trees(datasource, estimator, _input_fn, plot_type,
                              result_table, feature_column_names, conn,
                              oss_dest, oss_ak, oss_sk, oss_endpoint,
                              oss_bucket_name)
    else:
        shap_dataset = pd.DataFrame(columns=feature_column_names)
        for i, (features, label) in enumerate(_input_fn()):
            shap_dataset.loc[i] = [
                item.numpy()[0][0] for item in features.values()
            ]
        explain_dnns(datasource, estimator, shap_dataset, plot_type,
                     result_table, feature_column_names, conn, oss_dest,
                     oss_ak, oss_sk, oss_endpoint, oss_bucket_name)
示例#4
0
def explain(datasource,
            estimator_string,
            select,
            feature_columns,
            feature_column_names,
            feature_metas={},
            label_meta={},
            model_params={},
            save="",
            pai_table="",
            plot_type='bar',
            result_table="",
            oss_dest=None,
            oss_ak=None,
            oss_sk=None,
            oss_endpoint=None,
            oss_bucket_name=None):
    estimator_cls = import_model(estimator_string)
    if is_tf_estimator(estimator_cls):
        model_params['model_dir'] = save
    model_params.update(feature_columns)
    pop_optimizer_and_loss(model_params)

    def _input_fn():
        dataset = input_fn(select, datasource, feature_column_names,
                           feature_metas, label_meta)
        return dataset.batch(1).cache()

    estimator = init_model_with_feature_column(estimator_cls, model_params)
    conn = connect_with_data_source(datasource)

    if estimator_cls in (tf.estimator.BoostedTreesClassifier,
                         tf.estimator.BoostedTreesRegressor):
        explain_boosted_trees(datasource, estimator, _input_fn, plot_type,
                              result_table, feature_column_names, conn,
                              oss_dest, oss_ak, oss_sk, oss_endpoint,
                              oss_bucket_name)
    else:
        shap_dataset = pd.DataFrame(columns=feature_column_names)
        for i, (features, label) in enumerate(_input_fn()):
            shap_dataset.loc[i] = [
                item.numpy()[0][0] for item in features.values()
            ]
        explain_dnns(datasource, estimator, shap_dataset, plot_type,
                     result_table, feature_column_names, conn, oss_dest,
                     oss_ak, oss_sk, oss_endpoint, oss_bucket_name)

    conn.close()
示例#5
0
def evaluate(datasource,
             estimator_string,
             select,
             result_table,
             feature_columns,
             feature_column_names,
             feature_metas={},
             label_meta={},
             model_params={},
             validation_metrics=["Accuracy"],
             save="",
             batch_size=1,
             validation_steps=None,
             verbose=0):
    estimator_cls = import_model(estimator_string)
    is_estimator = is_tf_estimator(estimator_cls)
    set_log_level(verbose, is_estimator)
    eval_dataset = get_dataset_fn(select,
                                  datasource,
                                  feature_column_names,
                                  feature_metas,
                                  label_meta,
                                  is_pai=False,
                                  pai_table="",
                                  batch_size=batch_size)

    model_params.update(feature_columns)
    pop_optimizer_and_loss(model_params)
    if is_estimator:
        model_params["model_dir"] = save
        estimator = estimator_cls(**model_params)
        result_metrics = estimator_evaluate(estimator, eval_dataset,
                                            validation_metrics)
    else:
        keras_model = init_model_with_feature_column(estimator_cls,
                                                     model_params)
        keras_model_pkg = sys.modules[estimator_cls.__module__]
        result_metrics = keras_evaluate(keras_model, eval_dataset, save,
                                        keras_model_pkg, validation_metrics)

    # write result metrics to a table
    conn = connect_with_data_source(datasource)
    if result_table:
        metric_name_list = ["loss"] + validation_metrics
        write_result_metrics(result_metrics, metric_name_list, result_table,
                             conn)
    conn.close()
示例#6
0
def _evaluate(datasource,
              estimator_string,
              select,
              result_table,
              feature_columns,
              feature_column_names,
              feature_metas={},
              label_meta={},
              model_params={},
              validation_metrics=["Accuracy"],
              save="",
              batch_size=1,
              validation_steps=None,
              verbose=0,
              pai_table=""):
    estimator_cls = import_model(estimator_string)
    is_estimator = is_tf_estimator(estimator_cls)
    set_log_level(verbose, is_estimator)
    eval_dataset = get_dataset_fn(select,
                                  datasource,
                                  feature_column_names,
                                  feature_metas,
                                  label_meta,
                                  is_pai=True,
                                  pai_table=pai_table,
                                  batch_size=batch_size)

    model_params.update(feature_columns)
    pop_optimizer_and_loss(model_params)
    if is_estimator:
        FLAGS = tf.app.flags.FLAGS
        model_params["model_dir"] = FLAGS.checkpointDir
        estimator = estimator_cls(**model_params)
        result_metrics = estimator_evaluate(estimator, eval_dataset,
                                            validation_metrics)
    else:
        keras_model = init_model_with_feature_column(estimator, model_params)
        keras_model_pkg = sys.modules[estimator_cls.__module__]
        result_metrics = keras_evaluate(keras_model, eval_dataset, save,
                                        keras_model_pkg, validation_metrics)

    if result_table:
        metric_name_list = ["loss"] + validation_metrics
        write_result_metrics(result_metrics, metric_name_list, result_table,
                             PaiIOConnection.from_table(result_table))
示例#7
0
def _predict(datasource,
             estimator_string,
             select,
             result_table,
             feature_columns,
             feature_column_names,
             feature_column_names_map,
             train_label_name,
             result_col_name,
             feature_metas={},
             model_params={},
             save="",
             batch_size=1,
             pai_table=""):
    estimator = import_model(estimator_string)
    model_params.update(feature_columns)
    is_estimator = is_tf_estimator(estimator)

    conn = PaiIOConnection.from_table(pai_table)
    selected_cols = db.selected_cols(conn, None)
    predict_generator = db.db_generator(conn, None)

    pop_optimizer_and_loss(model_params)

    if not is_estimator:
        if not issubclass(estimator, tf.keras.Model):
            # functional model need field_metas parameter
            model_params["field_metas"] = feature_metas
        print("Start predicting using keras model...")
        keras_predict(estimator, model_params, save, result_table,
                      feature_column_names, feature_metas, train_label_name,
                      result_col_name, conn, predict_generator, selected_cols)
    else:
        model_params['model_dir'] = save
        print("Start predicting using estimator model...")
        estimator_predict(result_table, feature_column_names, feature_metas,
                          train_label_name, result_col_name, conn,
                          predict_generator, selected_cols)

    print("Done predicting. Predict table : %s" % result_table)
示例#8
0
def keras_predict(estimator, model_params, save, result_table,
                  feature_column_names, feature_metas, train_label_name,
                  result_col_name, conn, predict_generator, selected_cols,
                  extra_result_cols):
    pop_optimizer_and_loss(model_params)
    classifier = init_model_with_feature_column(estimator, model_params)

    def eval_input_fn(batch_size, cache=False):
        feature_types = []
        for name in feature_column_names:
            # NOTE: vector columns like 23,21,3,2,0,0 should use shape None
            if feature_metas[name]["is_sparse"]:
                feature_types.append((tf.int64, tf.int32, tf.int64))
            else:
                feature_types.append(get_dtype(feature_metas[name]["dtype"]))
        tf_gen = tf_generator(predict_generator, selected_cols,
                              feature_column_names, feature_metas)
        dataset = tf.data.Dataset.from_generator(tf_gen,
                                                 (tuple(feature_types), ))
        ds_mapper = functools.partial(
            parse_sparse_feature_predict,
            feature_column_names=feature_column_names,
            feature_metas=feature_metas)
        dataset = dataset.map(ds_mapper).batch(batch_size)
        if cache:
            dataset = dataset.cache()
        return dataset

    def to_feature_sample(row, selected_cols):
        features = {}
        for name in feature_column_names:
            row_val = row[selected_cols.index(name)]
            if feature_metas[name].get("delimiter_kv", "") != "":
                # kv list that should be parsed to two features.
                if feature_metas[name]["is_sparse"]:
                    features[name] = tf.SparseTensor(
                        row_val[0], tf.ones_like(tf.reshape(row_val[0], [-1])),
                        row_val[2])
                    features["_".join([name,
                                       "weight"])] = tf.SparseTensor(*row_val)
                else:
                    raise ValueError(
                        "not supported DENSE column with key:value"
                        "list format.")
            else:
                if feature_metas[name]["is_sparse"]:
                    features[name] = tf.SparseTensor(*row_val)
                else:
                    features[name] = tf.constant(([row_val], ))
        return features

    if not hasattr(classifier, 'sqlflow_predict_one'):
        # NOTE: load_weights should be called by keras models only.
        # NOTE: always use batch_size=1 when predicting to get the pairs of
        #       features and predict results to insert into result table.
        pred_dataset = eval_input_fn(1)
        one_batch = next(iter(pred_dataset))
        # NOTE: must run predict one batch to initialize parameters. See:
        # https://www.tensorflow.org/alpha/guide/keras/saving_and_serializing#saving_subclassed_models  # noqa: E501
        classifier.predict_on_batch(one_batch)
        load_keras_model_weights(classifier, save)
    pred_dataset = eval_input_fn(1, cache=True).make_one_shot_iterator()

    column_names = selected_cols[:]
    try:
        train_label_index = selected_cols.index(train_label_name)
    except:  # noqa: E722
        train_label_index = -1
    if train_label_index != -1:
        del column_names[train_label_index]
    column_names.append(result_col_name)

    column_names.extend(extra_result_cols)

    with db.buffered_db_writer(conn, result_table, column_names, 100) as w:
        for row, _ in predict_generator():
            features = to_feature_sample(row, column_names)
            if hasattr(classifier, 'sqlflow_predict_one'):
                result = classifier.sqlflow_predict_one(features)
            else:
                result = classifier.predict_on_batch(features)

            if extra_result_cols:
                assert isinstance(
                    result, tuple
                ), "TO PREDICT must return a " \
                   "tuple when predict.extra_outputs is not empty"
                assert len(extra_result_cols) + 1 <= len(
                    result
                ), "TO PREDICT must return at least " \
                   "%d items instead of %d" % (len(extra_result_cols) + 1,
                                               len(result))
                extra_pred_outputs = result[1:len(extra_result_cols) + 1]
                result = result[0:1]
            else:
                extra_pred_outputs = None

            # FIXME(typhoonzero): determine the predict result is
            # classification by adding the prediction result together
            # to see if it is close to 1.0.
            if len(result[0]) == 1:  # regression result
                result = result[0][0]
            else:
                sum = 0
                for i in result[0]:
                    sum += i
                if np.isclose(sum, 1.0):  # classification result
                    result = result[0].argmax(axis=-1)
                else:
                    result = result[0]  # multiple regression result

            row.append(encode_pred_result(result))
            if extra_pred_outputs is not None:
                row.extend([encode_pred_result(p) for p in extra_pred_outputs])
            if train_label_index != -1 and len(row) > train_label_index:
                del row[train_label_index]
            w.write(row)
    del pred_dataset
示例#9
0
def predict_step(datasource,
                 select,
                 result_table,
                 label_name,
                 model,
                 pai_table=None):
    if isinstance(model, six.string_types):
        model = Model.load_from_db(datasource, model)
    else:
        assert isinstance(model,
                          Model), "not supported model type %s" % type(model)

    model_params = model.get_meta("attributes")
    train_fc_map = model.get_meta("features")
    label_meta = model.get_meta("label")
    train_label_desc = label_meta.get_field_desc()[0] if label_meta else None
    train_label_name = train_label_desc.name if train_label_desc else None
    estimator_string = model.get_meta("class_name")
    save = "model_save"

    field_descs = get_ordered_field_descs(train_fc_map)
    feature_column_names = [fd.name for fd in field_descs]
    feature_metas = dict([(fd.name, fd.to_dict(dtype_to_string=True))
                          for fd in field_descs])
    feature_columns = compile_ir_feature_columns(train_fc_map,
                                                 model.get_type())

    is_pai = True if pai_table else False
    if is_pai:
        select = "SELECT * FROM %s" % pai_table

    conn = db.connect_with_data_source(datasource)
    result_column_names, train_label_idx = create_predict_table(
        conn, select, result_table, train_label_desc, label_name)

    if is_pai:
        conn.close()
        conn = PaiIOConnection.from_table(pai_table)
        select = None

    selected_cols = result_column_names[0:-1]
    if train_label_idx >= 0:
        selected_cols = selected_cols[0:train_label_idx] + [
            train_label_name
        ] + selected_cols[train_label_idx:]

    estimator = import_model(estimator_string)
    model_params.update(feature_columns)
    is_estimator = is_tf_estimator(estimator)
    predict_generator = db.db_generator(conn, select)

    pop_optimizer_and_loss(model_params)
    if not is_estimator:
        if not issubclass(estimator, tf.keras.Model):
            # functional model need field_metas parameter
            model_params["field_metas"] = feature_metas
        print("Start predicting using keras model...")
        keras_predict(estimator, model_params, save, result_table,
                      feature_column_names, feature_metas, train_label_name,
                      label_name, conn, predict_generator, selected_cols)
    else:
        model_params['model_dir'] = save
        print("Start predicting using estimator model...")
        estimator_predict(result_table, feature_column_names, feature_metas,
                          train_label_name, label_name, conn,
                          predict_generator, selected_cols)

    print("Done predicting. Predict table : %s" % result_table)
    conn.close()
示例#10
0
def keras_predict(estimator, model_params, save, result_table,
                  feature_column_names, feature_metas, train_label_name,
                  result_col_name, conn, predict_generator, selected_cols):
    pop_optimizer_and_loss(model_params)
    classifier = init_model_with_feature_column(estimator, model_params)

    def eval_input_fn(batch_size, cache=False):
        feature_types = []
        for name in feature_column_names:
            # NOTE: vector columns like 23,21,3,2,0,0 should use shape None
            if feature_metas[name]["is_sparse"]:
                feature_types.append((tf.int64, tf.int32, tf.int64))
            else:
                feature_types.append(get_dtype(feature_metas[name]["dtype"]))
        tf_gen = tf_generator(predict_generator, selected_cols,
                              feature_column_names, feature_metas)
        dataset = tf.data.Dataset.from_generator(tf_gen,
                                                 (tuple(feature_types), ))
        ds_mapper = functools.partial(
            parse_sparse_feature_predict,
            feature_column_names=feature_column_names,
            feature_metas=feature_metas)
        dataset = dataset.map(ds_mapper).batch(batch_size)
        if cache:
            dataset = dataset.cache()
        return dataset

    if not hasattr(classifier, 'sqlflow_predict_one'):
        # NOTE: load_weights should be called by keras models only.
        # NOTE: always use batch_size=1 when predicting to get the pairs of
        #       features and predict results to insert into result table.
        pred_dataset = eval_input_fn(1)
        one_batch = next(iter(pred_dataset))
        # NOTE: must run predict one batch to initialize parameters. See:
        # https://www.tensorflow.org/alpha/guide/keras/saving_and_serializing#saving_subclassed_models  # noqa: E501
        classifier.predict_on_batch(one_batch)
        load_keras_model_weights(classifier, save)
    pred_dataset = eval_input_fn(1, cache=True).make_one_shot_iterator()

    column_names = selected_cols[:]
    try:
        train_label_index = selected_cols.index(train_label_name)
    except:  # noqa: E722
        train_label_index = -1
    if train_label_index != -1:
        del column_names[train_label_index]
    column_names.append(result_col_name)

    with db.buffered_db_writer(conn, result_table, column_names, 100) as w:
        for features in pred_dataset:
            if hasattr(classifier, 'sqlflow_predict_one'):
                result = classifier.sqlflow_predict_one(features)
            else:
                result = classifier.predict_on_batch(features)
            # FIXME(typhoonzero): determine the predict result is
            # classification by adding the prediction result together
            # to see if it is close to 1.0.
            if len(result[0]) == 1:  # regression result
                result = result[0][0]
            else:
                sum = 0
                for i in result[0]:
                    sum += i
                if np.isclose(sum, 1.0):  # classification result
                    result = result[0].argmax(axis=-1)
                else:
                    result = result[0]  # multiple regression result
            row = []
            for idx, name in enumerate(feature_column_names):
                val = features[name].numpy()[0][0]
                row.append(str(val))
            if isinstance(result, np.ndarray):
                if len(result) > 1:
                    # NOTE(typhoonzero): if the output dimension > 1, format
                    # output tensor using a comma separated string. Only
                    # available for keras models.
                    row.append(",".join([str(i) for i in result]))
                else:
                    row.append(str(result[0]))
            else:
                row.append(str(result))
            w.write(row)
    del pred_dataset