示例#1
0
import numpy as np
from rvm import RVMClassification
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

data = np.loadtxt("data_sets/german/german.data-numeric.txt")

for el in data:
    if el[-1] == 2:
        el[-1] = 0

indexes = [i for i in range(24)]
data_x = data[:, indexes]
data_t = data[:, [24]]
data_t = data_t.reshape((len(data_t), ))

train_x, test_x, train_y, test_y = train_test_split(data_x,
                                                    data_t,
                                                    test_size=0.3)

cl = RVMClassification(kernel='rbf')
cl.fit(train_x, train_y)

print(accuracy_score(cl.predict(test_x), test_y))
示例#2
0
for i in range(n_ex // 2):
    p = np.random.rand(1, 2)[0, :]
    p[0] *= np.pi
    p[1] *= 1.5
    while np.sin(p[0]) > p[1]:
        p = np.random.rand(1, 2)[0, :]
        p[0] *= np.pi
        p[1] *= 1.5
    train_x.append(p)
    train_y.append(0)

train_x = np.matrix(train_x)
train_y = np.array(train_y)

cl = RVMClassification(kernel="rbf", gamma=1)
cl.fit(train_x, train_y)

valid_x = np.matrix(np.random.uniform(0, 1, size=(50, 2)))
valid_x[:, 1] *= 1.5
valid_x[:, 0] *= np.pi

valid_y = np.sign(np.sin(valid_x[:, 0]) - valid_x[:, 1])

valid_y[valid_y == -1] = 0

predicted_y = cl.predict(valid_x)

plt.plot(train_x[:, 0].A[:n_ex // 2], train_x[:, 1].A[:n_ex // 2], 'rx')
plt.plot(train_x[:, 0].A[n_ex // 2:], train_x[:, 1].A[n_ex // 2:], 'gx')
示例#3
0
import numpy as np
from rvm import RVMClassification
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

data = np.loadtxt("data_sets/german/german.data-numeric.txt")

for el in data:
    if el[-1] == 2:
        el[-1] = 0

indexes = [i for i in range(24)]
data_x = data[:, indexes]
data_t = data[:, [24]]
data_t = data_t.reshape((len(data_t),))

train_x, test_x, train_y, test_y = train_test_split(data_x, data_t, test_size=0.3)

cl = RVMClassification(kernel='rbf')
cl.fit(train_x, train_y)

print(accuracy_score(cl.predict(test_x), test_y))
示例#4
0
for i in range(n_ex // 2):
    p = np.random.rand(1, 2)[0, :]
    p[0] *= np.pi
    p[1] *= 1.5
    while np.sin(p[0]) > p[1]:
        p = np.random.rand(1, 2)[0, :]
        p[0] *= np.pi
        p[1] *= 1.5
    train_x.append(p)
    train_y.append(0)

train_x = np.matrix(train_x)
train_y = np.array(train_y)

cl = RVMClassification(kernel="rbf", gamma=1)
cl.fit(train_x, train_y)

valid_x = np.matrix(np.random.uniform(0, 1, size=(50, 2)))
valid_x[:, 1] *= 1.5
valid_x[:, 0] *= np.pi

valid_y = np.sign(np.sin(valid_x[:, 0]) - valid_x[:, 1])

valid_y[valid_y == -1] = 0

predicted_y = cl.predict(valid_x)

plt.plot(train_x[:, 0].A[:n_ex // 2], train_x[:, 1].A[:n_ex // 2], 'rx')
plt.plot(train_x[:, 0].A[n_ex // 2:], train_x[:, 1].A[n_ex // 2:], 'gx')