sys.path.append('./rw') import rw import numpy as np import random import math import sys numnodes=15 numlinks=4 probRewire=.3 numx=3 graph_seed=1 x_seed=graph_seed randomseed=1 g,a=rw.genG(numnodes,numlinks,probRewire,seed=graph_seed) Xs=[rw.genX(g, seed=x_seed+i) for i in range(numx)] def PfromB(b): P=np.empty([numnodes,numnodes],dtype=float) # set P from b (transition matix P[to,from]) for colnum, col in enumerate(b.T): for rownum, row in enumerate(col): P[rownum,colnum]=math.exp(row)/sum([math.exp(i) for i in col]) return P def regml(): #random.seed(randomseed) # only for replicability #np.random.seed(randomseed) # free parameters
}) toygraph = rw.Toygraphs({ 'graphtype': "steyvers", 'numnodes': 50, 'numlinks': 6 }) fh = open('priming_test.csv', 'w') seed = 15 for td in toydata: print "numx: ", td.numx # generate data with priming and fit best graph g, a = rw.genG(toygraph, seed=seed) [Xs, irts, alter_graph] = rw.genX(g, td, seed=seed) bestgraph_priming, ll = rw.uinvite(Xs, td, toygraph.numnodes, fitinfo=fitinfo, seed=seed, debug=True) priming_cost = rw.cost(bestgraph_priming, a) print priming_cost td.priming = 0.0 # fit best graph assuming no priming bestgraph_nopriming, ll = rw.uinvite(Xs, td, toygraph.numnodes,
import rw import numpy as np steps=[] ehs=[] meaneh=[] meanstep=[] fh1 = open('ehmean.csv','w') fh2 = open('eh.csv','w') for i in range(10000): print i g,a=rw.genG(20,4,.3) X,step=rw.genX(g,use_irts=1) eh=rw.expectedHidden([X],a,len(a))[0] steps.append(step) ehs.append(eh) meaneh.append(np.mean(eh)) meanstep.append(np.mean(step)) for num, i in enumerate(meaneh): fh1.write(str(i) + "," + str(meanstep[num-1]) + "\n") ehs=rw.flatten_list(ehs) steps=rw.flatten_list(steps) for num, i in enumerate(ehs): fh2.write(str(i) + "," + str(steps[num-1]) + "\n") fh1.close()
irts = rw.Irts({ 'data': [], 'irttype': "gamma", 'beta': (1 / 1.1), 'irt_weight': 0.9, 'rcutoff': 20 }) fitinfo = rw.Fitinfo({ 'tolerance': 1500, 'startGraph': "naiverw", 'prob_multi': 1.0, 'prob_overlap': 0.5 }) x_seed = 1 graph_seed = 1 td = toydata[0] g, a = rw.genG(toygraphs, seed=graph_seed) [Xs, irts.data] = zip(*[rw.genX(g, td, seed=x_seed + i) for i in range(td.numx)]) Xs = list(Xs) irts.data = list(irts.data) [Xs, irts.data, alter_graph] = rw.trimX(td.trim, Xs, irts.data) # trim data when necessary rw.drawMat(a, cmap=plt.cm.BuGn) newmat = rw.drawMatChange(Xs, a, td, (0, 1), keep=0) # e.g.